Slippery proteins in the brain’s blood vessels form a protective barrier that breaks down with age, studies in mice show.
Category: life extension – Page 4
New therapies for managing ageing could emerge from research into a new gene, which scientists have identified as a key driver of degeneration.
Age-related diseases are strongly linked to inflammation which when chronic, albeit low-grade, contributes to conditions such as cardiovascular disease, diabetes, neurodegeneration, and sarcopenia, significantly impacting health and longevity.
In a study published in Nature Communications, Dr Ildus Akhmetov, a geneticist at Liverpool John Moores University’s School of Sport and Exercise Sciences, along with colleagues from Italy, Switzerland, and the Netherlands, uncovered groundbreaking insights into the role of the Ectodysplasin A2 Receptor (EDA2R) in this process.
Microbes, Ecology And Medicine — Dr. Sean M. Gibbons, Ph.D. — Associate Professor, Institute for Systems Biology (ISB)
Dr. Sean Gibbons, Ph.D. is Associate Professor at the Institute for Systems Biology (ISB — https://isbscience.org/people/sean-gibbons-phd/?tab=biography where his lab investigates how the structure and composition of evolving ecological networks of microorganisms change across environmental gradients, with a specific focus on how ecological communities in the gut change and adapt to individual people over their lifespans (i.e. host genotype, host development and host behavior) and how these changes impact human health (https://gibbons.isbscience.org/). His lab develops computational and experimental tools for investigating host-associated microbial communities to explore the interactions between ecology, evolution and ecosystem function, applying these insights to develop personalized interventions for improving human health and well-being.
Dr. Gibbons received his PhD in biophysical sciences from the University of Chicago in 2015, dual-advised by Jack Gilbert and Maureen Coleman. His graduate work focused on using microbial communities as empirical models for testing ecological theory.
Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhDDiscount Links/Affiliates: Blood testing (where I get the majority of my labs): https://www.u…
Researchers from Cleveland Clinic’s Genome Center have outlined the pathway human herpes simplex virus-1 (HSV1) can use to contribute to Alzheimer’s disease in aging brains. In a report published in Alzheimer’s & Dementia, investigators also share two FDA-approved, commercially available drugs that reverse this pathway in a laboratory setting.
The findings are the first concrete evidence to support the previously controversial link between human herpesviruses (HHVs) and Alzheimer’s disease. Illustrating the potential for herpes to trigger dementia aids continued efforts to prevent and cure neurodegenerative disease, says senior author and Genome Center director Feixiong Cheng, Ph.D…
For most people, contracting a herpes infection is just an inconvenient or harmless fact of life. Many herpesviruses are individually present in a large percentage of people worldwide, meaning virtually every human being on earth is expected to contract at least three types of herpesviruses by adulthood. Some of these viruses don’t cause symptoms, while others only cause minor illnesses like mono or chickenpox. However, even after these illnesses subside, an infected individual still carries herpesviruses for the rest of their life, with only minor symptoms like occasional cold sores.
Scientists are uncovering the powerful role hormones play in skin aging, revealing new potential treatments for wrinkles, hair graying, and overall skin health.
While traditional anti-aging hormones like retinoids and estrogen have been widely used, new research highlights a broader range of hormones that influence skin structure, pigment, and resilience.
Hormones and Anti-Aging Potential.
Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD
Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.
Clearly Filtered Water Filter: https://get.aspr.app/SHoPY
A biomaterial that can mimic certain behaviors within biological tissues could advance regenerative medicine, disease modeling, soft robotics and more, according to researche(rs at Penn State.
Materials created up to this point to mimic tissues and extracellular matrices (ECMs) — the body’s biological scaffolding of proteins and molecules that surrounds and supports tissues and cells — have all had limitations that hamper their practical applications, according to the team. To overcome some of those limitations, the researchers developed a bio-based, “living” material that encompasses self-healing properties and mimics the biological response of ECMs to mechanical stress.
They published their results in Materials Horizons, where the research was also featured on the cover of the journal.
Stacy Andersen has studied people who are 100 and over for two decades. The importance of sleep for healthy aging is one of the biggest lessons she’s learned.
Exosomes are small vesicles with diameters ranging from 30 to 150 nm. They originate from cellular endocytic systems. These vesicles contain a rich payload of biomolecules, including proteins, nucleic acids, lipids, and metabolic products. Exosomes mediate intercellular communication and are key regulators of a diverse array of biological processes, such as oxidative stress and chronic inflammation. Furthermore, exosomes have been implicated in the pathogenesis of infectious diseases, autoimmune disorders, and cancer. Aging is closely associated with the onset and progression of numerous diseases and is significantly influenced by exosomes. Recent studies have consistently highlighted the important functions of exosomes in the regulation of cellular senescence.