It’s easy to take joint mobility for granted. Without thinking, it’s simple enough to turn the pages of a book or bend to stretch out a sore muscle. Designers don’t have the same luxury. When building a joint, be it for a robot or wrist brace, designers seek customizability across all degrees of freedom but are often restricted by their versatility to adapt to different use contexts.
Researchers at Carnegie Mellon University’s College of Engineering have developed an algorithm to design metastructures that are reconfigurable across six degrees of freedom and allow for stiffness tunability. The algorithm can interpret the kinematic motions that are needed for multiple configurations of a device and assist designers in creating such reconfigurability. This advancement gives designers more precise control over the functionality of joints for various applications.
The team demonstrated the structure’s versatile capabilities via multiple wearable devices tailored for unique movement functions, body areas, and uses.
Scientists have discovered a way to use live tissue as a computational reservoir to solve problems and potentially predict chaotic systems like the weather.
Northwestern University engineers have developed a pacemaker so tiny that it can fit inside the tip of a syringe — and be non-invasively injected into the body.
Smaller than a single grain of rice, the pacemaker is paired with a small, soft, flexible, wireless, wearable device that mounts onto a patient’s chest to control pacing. When the wearable device detects an irregular heartbeat, it automatically shines a light pulse to activate the pacemaker. These short pulses— which penetrate through the patient’s skin, breastbone and muscles — control the pacing. #Repost
Although it can work with hearts of all sizes, the pacemaker is particularly well-suited to the tiny, fragile hearts of newborn babies with congenital heart defects.
Designed for patients who only need temporary pacing, the pacemaker simply dissolves after it’s no longer needed. All the pacemaker’s components are biocompatible, so they naturally dissolve into the body’s biofluids, bypassing the need for surgical extraction.
Noninvasive therapy seeks to enhance focus and behavior by gently stimulating a nerve associated with attention and executive functioning. Researchers at UCLA Health are initiating the first clinical trial to determine whether a wearable device that provides gentle nerve stimulation during sleep
Just one look at the next-generation lightweight, soft exoskeleton for children with cerebral palsy reveals the powerful role technology can play in solving global challenges and improving lives.
Built to help children walk, MyoStep addresses motor impairments that severely restrict children’s participation in physical activities, self-care and academic pursuits, leading to developmental delays, social isolation and reduced self-esteem. It is lightweight, discreet, made of smart materials and wearable technology, and tailored to fit seamlessly into the lives of children and their families.
The MyoStep soft exoskeleton is introduced in IEEE Electron Devices Magazine by a team from the NSF UH Building Reliable Advances and Innovation in Neurotechnology (BRAIN) Center, an Industry–University Cooperative Research Center (IUCRC) and TIRR Memorial Hermann.
Meta has laid off employees in the company’s Reality Labs division that is tasked with developing virtual reality, augmented reality and wearable devices.
Filipino scientists have discovered a simple, affordable way to make dynamically adjustable water-based lenses that have a wide variety of potential future applications—from classrooms and research labs to cameras and even wearable gadgets. Their research is published in the journal Results in Optics.
By coating an ordinary glass slide with specially prepared polyvinyl chloride (PVC) plastic, the researchers were able to create a hydrophobic surface that could hold a water droplet in a dome shape similar to a magnifying glass. And by adding or removing water from the droplet, they were able to change and control the magnifying power of this liquid lens with minimal loss or distortion.
In a process called “electrospinning,” the researchers melted the PVC in an electric field, which stretches out and deposits the plastic onto the glass slide as very fine microfibers. This makes the surface of the slide more water repellent, and the result is that water droplets stay in a spherical dome shape instead of flattening out.
How can electronic “skin” help advance the electronics and computer industry? This is what a recent study published in Nature hopes to address as a team of researchers from the Massachusetts Institute of technology (MIT) and funded by the U.S. Air Force Office of Scientific Research developed an ultrathin electronic “skin” that can sense heat and radiation. This study has the potential to expand the electronics industry by enhancing wearable and imaging devices used on smaller scales than at present.
For the study, the researchers designed and built a pyroelectric (temperature changes to create electric current) material that is only 10 nanometers thick while exhibiting superior sensing capabilities for wide ranges of heat and radiation. To accomplish this, the team conducted a series of laboratory experiments to verify the material’s capabilities, including using the material on a computer chip that measured approximately 60 square microns (approximately 0.006 square centimeters) and comprised of 100 ultrathin heat-sensing pixels. The pixels were then subjected to temperature changes to demonstrate its ability to measure those changes, which the researchers noted was successful.
“This film considerably reduces weight and cost, making it lightweight, portable, and easier to integrate,” said Xinyuan Zhang, who is a PhD student in MIT’s Department of Materials Science and Engineering (DMSE) and lead author of the study. “For example, it could be directly worn on glasses.”
Human cyborgs are individuals who integrate advanced technology into their bodies, enhancing their physical or cognitive abilities. This fusion of man and machine blurs the line between science fiction and reality, raising questions about the future of humanity, ethics, and the limits of human potential. From bionic limbs to brain-computer interfaces, cyborg technology is rapidly evolving, pushing us closer to a world where humans and machines become one.