The device provides a range of sensations, such as vibrations, pressure, and twisting. A team of engineers led by Northwestern University has developed a new wearable device that stimulates the skin to deliver a range of complex sensations. This thin, flexible device gently adheres to the skin, offering more realistic and immersive sensory experiences. While it is well-suited for gaming and virtual reality (VR), the researchers also see potential applications in healthcare. For instance, the device could help individuals with visual impairments “feel” their surroundings or provide feedback to those with prosthetic limbs.
Category: wearables – Page 3
Innovative biorobotic arm uses artificial muscles to combat tremors, paving way for wearable solutions
Posted in biotech/medical, cyborgs, robotics/AI, transhumanism, wearables | Leave a Comment on Innovative biorobotic arm uses artificial muscles to combat tremors, paving way for wearable solutions
It is estimated that about 80 million people worldwide live with a tremor. For example, those who live with Parkinson’s disease. The involuntary periodic movements sometimes strongly affect how patients are able to perform daily activities, such as drinking from a glass or writing.
Wearable soft robotic devices offer a potential solution to suppress such tremors. However, existing prototypes are not yet sophisticated enough to provide a real remedy.
Scientists at the Max Planck Institute for Intelligent Systems (MPI-IS), the University of Tübingen, and the University of Stuttgart under the Bionic Intelligence Tübingen Stuttgart (BITS) collaboration want to change this. The team equipped a biorobotic arm with two strands of artificial muscles strapped along the forearm.
An international team of scientists developed augmented reality glasses with technology to receive images beamed from a projector, to resolve some of the existing limitations of such glasses, such as their weight and bulk. The team’s research is being presented at the IEEE VR conference in Saint-Malo, France, in March 2025.
Augmented reality (AR) technology, which overlays digital information and virtual objects on an image of the real world viewed through a device’s viewfinder or electronic display, has gained traction in recent years with popular gaming apps like Pokémon Go, and real-world applications in areas including education, manufacturing, retail and health care. But the adoption of wearable AR devices has lagged over time due to their heft associated with batteries and electronic components.
AR glasses, in particular, have the potential to transform a user’s physical environment by integrating virtual elements. Despite many advances in hardware technology over the years, AR glasses remain heavy and awkward and still lack adequate computational power, battery life and brightness for optimal user experience.
From brain implants that allow paralyzed patients to communicate to the wearable devices enhancing our capabilities, brain-computer interfaces could change the way we use our minds forever. (Source: Bloomberg)
Stretchable display materials, which are gaining traction in the next-generation display market, have the advantage of being able to stretch and bend freely, but the limitations of existing materials have resulted in distorted screens and poor fit.
General elastomeric substrates are prone to screen distortion due to the “Poisson’s ratio” phenomenon, in which stretching in one direction causes the screen to shrink in the vertical direction. In particular, electronics that are in close contact with the skin, such as wearable devices, are at risk of wrinkling or pulling on the skin during stretching and shrinking, resulting in poor fit and performance.
A research team led by Dr. Jeong Gon Son of the Korea Institute of Science and Technology (KIST) and Professor Yongtaek Hong of Seoul National University have developed a nanostructure-aligned stretchable substrate that dramatically lowers the Poisson’s ratio. The work is published in the journal Advanced Materials.
New energy-harvesting nanogenerators may power IoT devices, sensors, and wearables using everyday mechanical movements.
This was first predicted by Omni magazine in 1981.
In the world of medicine, the ability to listen to the intricate symphony of sounds within the human body has long been a vital diagnostic tool. Physicians routinely employ stethoscopes to capture the subtle rhythms of air moving in and out of the lungs, the steady beat of the heart, and even the progress of digested food through the gastrointestinal tract.
These sounds hold valuable information about a person’s health, and any deviations from the norm can signal the presence of underlying medical issues. Now, a groundbreaking development from Northwestern University is set to transform the way we monitor these vital sounds.
Researchers at Northwestern University have introduced a revolutionary soft, miniaturized wearable device that transcends the episodic measurements typically obtained during periodic doctor examinations. These innovative devices adhere gently to the skin, enabling continuous, wireless monitoring of crucial body sounds across multiple regions of the body simultaneously. This groundbreaking research was published in the prestigious journal Nature Medicine.
Organic electrochemical transistors enhance bioelectronic sensor sensitivity by three orders of magnitude
Posted in biotech/medical, chemistry, computing, engineering, health, wearables | Leave a Comment on Organic electrochemical transistors enhance bioelectronic sensor sensitivity by three orders of magnitude
In a breakthrough that could transform bioelectronic sensing, an interdisciplinary team of researchers at Rice University has developed a new method to dramatically enhance the sensitivity of enzymatic and microbial fuel cells using organic electrochemical transistors (OECTs). The research was recently published in the journal Device.
The innovative approach amplifies electrical signals by three orders of magnitude and improves signal-to-noise ratios, potentially enabling the next generation of highly sensitive, low-power biosensors for health and environmental monitoring.
“We have demonstrated a simple yet powerful technique to amplify weak bioelectronic signals using OECTs, overcoming previous challenges in integrating fuel cells with electrochemical sensors,” said corresponding author Rafael Verduzco, professor of chemical and biomolecular engineering and materials science and nanoengineering. “This method opens the door to more versatile and efficient biosensors that could be applied in medicine, environmental monitoring and even wearable technology.”
DGIST research teams have developed a self-powered sensor that uses motion and pressure to generate electricity and light simultaneously. This battery-free technology is expected to be used in various real-life applications, such as disaster rescue, sports, and wearable devices.
Triboelectric nanogenerators (TENG) and mechanoluminescence (ML) have attracted attention as green energy technologies that can generate electricity and light, respectively, without external power. However, researchers in previous studies mainly focused on the two technologies separately or simply combined them. Moreover, the power output stability of TENG and the insufficient luminous duration of ML materials have been major limitations for practical applications.
The research team has developed a system that generates electricity and light simultaneously using motion and pressure. They added light-emitting zinc sulfide-copper (ZnS: Cu) particles to a rubber-like material (polydimethylsiloxane [PDMS]) and designed a single electrode structure based on silver nanowires to obtain high efficiency. The developed device does not degrade in performance even after being repeatedly pressed more than 5,000 times, and it stably generates voltages of up to 60 V and a current of 395 nA.
Plastic that conducts electricity might sound impossible. But there is a special class of materials known as “electronic polymers” that combines the flexibility of plastic with the functionality of metal. This type of material opens the door for breakthroughs in wearable devices, printable electronics and advanced energy storage systems.
Yet, making thin films from electronic polymers has always been a difficult task. It takes a lot of fine-tuning to achieve the right balance of physical and electronic properties. Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have created an innovative solution to this challenge with artificial intelligence (AI).
They used an AI-driven, automated materials laboratory, a tool called Polybot, to explore processing methods and produce high-quality films. Polybot is located at the Center for Nanoscale Materials, a DOE Office of Science user facility at Argonne.