Toggle light / dark theme

Murata is branching out from its usual ceramic components with the launch of flexible, stretchable electronics — a Stretchable Printed Circuit (SPC) platform it says is ideally positioned for wearable and medical devices.

In recent years, in the medical field, to make more accurate diagnoses, the…


Bendy, soft, stretchy devices target the wearable and medical markets.

Wearable devices like smartwatches and fitness trackers interact with parts of our bodies to measure and learn from internal processes, such as our heart rate or sleep stages.

Now, MIT researchers have developed that may be able to perform similar functions for inside the body.

These battery-free, subcellular-sized devices, made of a soft polymer, are designed to gently wrap around different parts of neurons, such as axons and dendrites, without damaging the cells, upon wireless actuation with light. By snugly wrapping neuronal processes, they could be used to measure or modulate a neuron’s electrical and metabolic activity at a subcellular level.

A key challenge in the effort to link brain activity with behavior is that brain activity, measured by functional magnetic resonance imaging (fMRI), for instance, is extraordinarily complex. That complexity can make it difficult to find recurring activity patterns across different people or within individuals.

In a new study, Yale researchers were able to take fMRI data, reduce its complexity, and in doing so, uncover stable patterns of activity shared across more than 300 different people. The findings, researchers say, are a promising step forward in uncovering biomarkers for psychiatric disorders.

The study was published Sept. 24 in the journal PLOS Biology.

This is clearly aimed at Wearable AI such as the Ray-Ban Meta Wayfarers and other similar devices.

I was wondering how large of a language model can you fit in a pair of sunglasses?

Meta AI researchers have unveiled MobileLLM, a new approach to creating efficient language models designed for…


Key innovations in Meta’s MobileLLM include prioritizing model depth over width, implementing embedding sharing and grouped-query attention and utilizing a novel immediate block-wise weight-sharing technique.

While using the Meta AI chatbot on WhatsApp it answered my query with some great advice.

It almost felt like I had some support from a good friend.


I was kind of taken aback by the answer. Since I purchased the Ray-Ban \ Meta Wayfarers I have jokingly told people that I am wearing a large language model on my face. I came to find out that information is incorrect.

Meta AI responded, “That’s a cool device! Unfortunately, I’m not compatible with the Ray-Ban Meta smart glasses (yet!). I exist solely as a text-based AI assistant, so you can’t talk to me directly through the glasses.”

Finding ways to connect the human body to technology could have broad applications in health and entertainment. A new “electric plastic” could make self-powered wearables, real-time neural interfaces, and medical implants that merge with our bodies a reality.

While there has been significant progress in the development of wearable and implantable technology in recent years, most electronic materials are hard, rigid, and feature toxic metals. A variety of approaches for creating “soft electronics” has emerged, but finding ones that are durable, power-efficient, and easy to manufacture is a significant challenge.

Organic ferroelectric materials are promising because they exhibit spontaneous polarization, which means they have a stable electric field pointing in a particular direction. This polarization can be flipped by applying an external electrical field, allowing them to function like a bit in a conventional computer.

DGIST Professor Youngu Lee and Jeonbuk National University Professor Jaehyuk Lim successfully developed an ultra-sensitive, transparent, and flexible electronic skin mimicking the neural network in the human brain. — Applicable across different areas, including healthcare wearable devices and transparent display touch panels.

Organic electrochemical transistors (OECTs) are neuromorphic transistors made of carbon-based materials that combine both electronic and ionic charge carriers. These transistors could be particularly effective solutions for amplifying and switching electronic signals in devices designed to be placed on the human skin, such as smart watches, trackers that monitor physiological signals and other wearable technologies.

In contrast with conventional neuromorphic transistors, OECTs could operate reliably in wet or humid environments, which would be highly advantageous for both medical and wearable devices. Despite their potential, most existing OECTs are based on stiff materials, which can reduce the comfort of wearables and thus hinder their large-scale deployment.

Researchers at the University of Hong Kong have developed a new wearable device based on stretchable OECTs that can both perform computations and collect signals from the surrounding environment. Their proposed system, presented in a paper published in Nature Electronics, could be used to realize in-sensor edge computing on a flexible wearable device that is comfortable for users.

In the age of technology everywhere, we are all too familiar with the inconvenience of a dead battery. But for those relying on a wearable healthcare device to monitor glucose, reduce tremors, or even track heart function, taking time to recharge can pose a big risk.

For the first time, researchers in Carnegie Mellon University have shown that a healthcare device can be powered using body heat alone. By combining a pulse oximetry sensor with a flexible, stretchable, wearable thermoelectric energy generator composed of liquid metal, semiconductors, and 3D printed rubber, the team has introduced a promising way to address battery life concerns.