Toggle light / dark theme

Snap a photo of your meal, and artificial intelligence instantly tells you its calorie count, fat content, and nutritional value—no more food diaries or guesswork.

This futuristic scenario is now much closer to reality, thanks to an AI system developed by NYU Tandon School of Engineering researchers that promises a new tool for the millions of people who want to manage their weight, diabetes and other diet-related health conditions.

The technology, detailed in a paper presented at the 6th IEEE International Conference on Mobile Computing and Sustainable Informatics, uses advanced deep-learning algorithms to recognize food items in images and calculate their nutritional content, including calories, protein, carbohydrates and fat.

Originally released December 2023._ In today’s episode, host Luisa Rodriguez speaks to Nita Farahany — professor of law and philosophy at Duke Law School — about applications of cutting-edge neurotechnology.

They cover:
• How close we are to actual mind reading.
• How hacking neural interfaces could cure depression.
• How companies might use neural data in the workplace — like tracking how productive you are, or using your emotional states against you in negotiations.
• How close we are to being able to unlock our phones by singing a song in our heads.
• How neurodata has been used for interrogations, and even criminal prosecutions.
• The possibility of linking brains to the point where you could experience exactly the same thing as another person.
• Military applications of this tech, including the possibility of one soldier controlling swarms of drones with their mind.
• And plenty more.

In this episode:
• Luisa’s intro [00:00:00]
• Applications of new neurotechnology and security and surveillance [00:04:25]
• Controlling swarms of drones [00:12:34]
• Brain-to-brain communication [00:20:18]
• Identifying targets subconsciously [00:33:08]
• Neuroweapons [00:37:11]
• Neurodata and mental privacy [00:44:53]
• Neurodata in criminal cases [00:58:30]
• Effects in the workplace [01:05:45]
• Rapid advances [01:18:03]
• Regulation and cognitive rights [01:24:04]
• Brain-computer interfaces and cognitive enhancement [01:26:24]
• The risks of getting really deep into someone’s brain [01:41:52]
• Best-case and worst-case scenarios [01:49:00]
• Current work in this space [01:51:03]
• Watching kids grow up [01:57:03]

The 80,000 Hours Podcast features unusually in-depth conversations about the world’s most pressing problems and what you can do to solve them.

Learn more, read the summary and find the full transcript on the 80,000 Hours website:

Nita Farahany on the neurotechnology already being used to convict criminals and manipulate workers

A team of medical researchers and engineers at Google Research has developed a way to use the front-facing camera on a smartphone to monitor a patient’s heart rate. The team has published a paper on the technology on the arXiv preprint server.

Tracking a patient’s over time can reveal clues about their cardiovascular health. The most important measurement is resting heart rate (RHR)—people with an above-normal rate are at a higher risk of heart disease and/or stroke. Persistently high rates, the researchers note, can signal a serious problem.

Over the past several years, personal health device makers have developed wearable external heart monitors, such as necklaces or smartwatches. But these devices are expensive. The researchers have found a cheaper alternative—a deep-learning system that analyzes video from the front-facing camera of a smartphone. The system is called PHRM.

It could be very informative to observe the pixels on your phone under a microscope, but not if your goal is to understand what a whole video on the screen shows. Cognition is much the same kind of emergent property in the brain. It can only be understood by observing how millions of cells act in coordination, argues a trio of MIT neuroscientists. In a new article, they lay out a framework for understanding how thought arises from the coordination of neural activity driven by oscillating electric fields — also known as brain “waves” or “rhythms.”

Historically dismissed solely as byproducts of neural activity, brain rhythms are actually critical for organizing it, write Picower Professor Earl Miller and research scientists Scott Brincat and Jefferson Roy in Current Opinion in Behavioral Science. And while neuroscientists have gained tremendous knowledge from studying how individual brain cells connect and how and when they emit “spikes” to send impulses through specific circuits, there is also a need to appreciate and apply new concepts at the brain rhythm scale, which can span individual, or even multiple, brain regions.

“Spiking and anatomy are important, but there is more going on in the brain above and beyond that,” says senior author Miller, a faculty member in The Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences at MIT. “There’s a whole lot of functionality taking place at a higher level, especially cognition.”

A Cornell-led research team has developed an artificial intelligence-powered ring equipped with micro-sonar technology that can continuously—and in real time—track fingerspelling in American Sign Language (ASL).

In its current form, SpellRing could be used to enter text into computers or smartphones via fingerspelling, which is used in ASL to spell out words without corresponding signs, such as proper nouns, names and technical terms. With further development, the device—believed to be the first of its kind—could revolutionize ASL translation by continuously tracking entire signed words and sentences.

The research is published on the arXiv preprint server.

01:13 How Does Tesla Bot Gen 3 Handle Real-World Tasks?
06:12 How much does the Tesla Bot Gen 3 truly cost?
10:36 How is Tesla planning to sell the Bot Gen 3?
===
New UPDATE! Elon Musk LEAKED Tesla Bot Gen 3 10K Mass Production & All Real-Life Tasks Testing! Recently, Elon Musk confidently announced that the Tesla Bot Optimus can navigate independently in 95% of complex environments and react in just 20 milliseconds!
With a plan to produce 10,000 Tesla Optimus Gen 3 units in 2025, Tesla is leveraging its AI infrastructure, manufacturing capabilities, and real-world testing across more than 1,000 practical tasks to prepare for mass production this year.

New UPDATE! Elon Musk LEAKED Tesla Bot Gen 3 10K Mass Production & All Real-Life Tasks Testing! In today’s episode, we have compiled evidence from official announcements, technical demonstrations to validate the feasibility of this plan and pinpoint the final timeline and pricing for the 2025 production model.
But before we dive into price analysis in Part 2 and exactly launching time in Part 3 of this episode, you should first understand what we expect from this Tesla humanoid robot—and more importantly, whether it’s truly worth the price.
How Does Tesla Bot Gen 3 Handle Real-World Tasks?

New UPDATE! Elon Musk LEAKED Tesla Bot Gen 3 10K Mass Production & All Real-Life Tasks Testing! John Kennedy, nearly seventy, lay motionless on the floor, pain radiating from his hip and spine. His phone was just a few steps away—close, yet out of reach. Then, everything went dark.
A humanoid robot detected his fall. It gently lifted him up, scanned his injuries, and instantly sent an alert to his doctor.
Then came the doctor’s words, they wanted to send him to an assisted living facility.

===
#888999evs #teslacarworld #teslacar #888999 #teslabot #teslaoptimus #teslabotgen2 #teslabotgen3
subcribe: https://bit.ly/3i7gILj

Does autoimmunity underlie minimal change disease?

Tobias B. Huber, Nicola M. Tomas & team report a direct pathogenic role of anti-nephrin autoantibodies in the development of podocytopathy with a minimal change disease phenotype:

The electron microscopy image shows moderate podocyte foot process effacement (without electron-dense deposits) in the anti-nephrin rabbit.


Address correspondence to: Tobias B. Huber or Nicola M. Tomas, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany. Phone: 49.40.7410.53908; Email: [email protected] (TBH); [email protected] (NMT).

Battery waste has become an increasing problem in recent years due to the massive demand for consumer electronics like smartphones and laptops, as well as the electrification of the automotive industry.

A recent report from Stanford University in the US, published in the journal Nature Communications, found that recycling lithium-ion batteries is far more environmentally friendly than mining for new materials.

Researchers have advanced a decades-old challenge in the field of organic semiconductors, opening new possibilities for the future of electronics. The researchers, led by the University of Cambridge and the Eindhoven University of Technology, have created an organic semiconductor that forces electrons to move in a spiral pattern, which could improve the efficiency of OLED displays in television and smartphone screens, or power next-generation computing technologies such as spintronics and quantum computing.

The semiconductor they developed emits circularly polarized light—meaning the light carries information about the ‘handedness’ of electrons. The internal structure of most inorganic semiconductors, like silicon, is symmetrical, meaning electrons move through them without any preferred direction.

However, in nature, molecules often have a chiral (left-or right-handed) structure: like human hands, are mirror images of one another. Chirality plays an important role in like DNA formation, but it is a difficult phenomenon to harness and control in electronics.

A major breakthrough in organic semiconductors.

Semiconductors are materials with electrical conductivity that falls between conductors and insulators, making them essential for modern electronics. They are typically crystalline solids, the most common of which is silicon, used extensively in the production of electronic components such as transistors and diodes. Semiconductors are unique because their conductivity can be altered and controlled through doping—adding impurities to the material to change its electrical properties. This property allows them to serve as the foundation for integrated circuits and microchips, powering everything from computers and smartphones to advanced medical devices and renewable energy technologies. The behavior of semiconductors is also crucial in the development of various electronic, photonic, and quantum devices.