Phishing gang arrested in Belgium and Netherlands; Europol seizes luxury goods, cash, and millions stolen.
Category: mobile phones – Page 5
That ordinary smartphone in your pocket could be a powerful tool for investigating outer space. In a new study, researchers at Google and CU Boulder have transformed millions of Android phones across the globe into a fleet of nimble scientific instruments—generating one of the most detailed maps to date of the uppermost layer of Earth’s atmosphere.
The group’s findings, published Nov. 13 in the journal Nature, might help to improve the accuracy of GPS technology worldwide several-fold. The research was led by Brian Williams of Google Research and included Jade Morton, professor in the Ann and H.J. Smead Department of Aerospace Engineering Sciences at CU Boulder.
“These phones can literally fit in your palm,” Morton said. “But through crowdsourcing, we can use them to change the way we understand the space environment.”
Scientists at UCL and the IIT-Istituto Italiano di Tecnologia (Italian Institute of Technology) have created a temporary tattoo with light-emitting technology used in TV and smartphone screens, paving the way for a new type of “smart tattoo” with a range of potential uses.
The technology, which uses organic light-emitting diodes (OLEDs), is applied in the same way as water transfer tattoos. That is, the OLEDs are fabricated onto temporary tattoo paper and transferred to a new surface by being pressed on to it and dabbed with water.
The researchers, who described the process in a new paper in the journal Advanced Electronic Materials, say it could be combined with other tattoo electronics to, for instance emit light when an athlete is dehydrated, or when we need to get out of the sun to avoid sunburn. OLEDs could be tattooed on packaging or fruit to signal when a product has passed its expiry date or will soon become inedible, or used for fashion in the form of glowing tattoos.
Satellite technology is impressive. But scientists fear there might be too many filling up our atmosphere. Here’s why.
Hackers Infect 8,000,000 Smartphones As ‘SpyLoan’ Drains Bank Accounts, Steals Sensitive Data for Extortion: McAfee Alert
Posted in cybercrime/malcode, finance, mobile phones | Leave a Comment on Hackers Infect 8,000,000 Smartphones As ‘SpyLoan’ Drains Bank Accounts, Steals Sensitive Data for Extortion: McAfee Alert
Cybersecurity firm McAfee says it’s identified a “significant global increase” in a smartphone hack that triggers extortion, harassment and drains bank accounts.
McAfee says hackers are increasingly deploying a group of malicious financial apps containing “SpyLoan” malware, posing a serious threat with more than eight million active installations around the world.
The apps are on Google Play and use the names, logos, brand colors and interfaces of well-known financial institutions.
Siddarth Kara’s bestseller, “Cobalt Red: How the Blood of Congo Powers Our Lives,” focuses on problems surrounding the sourcing of cobalt, a critical component of lithium-ion batteries that power many technologies central to modern life, from mobile phones and pacemakers to electric vehicles.
“Perhaps many of us have read how lithium-ion batteries are vital for energy storage technologies,” says Eric Schelter, the Hirschmann-Makineni Professor of Chemistry at the University of Pennsylvania. “But how materials that make up such batteries are sourced can be concerning and problematic, both ethically and environmentally.”
Schelter says that cobalt mining in the Democratic Republic of Congo, which supplies about 70% of the world’s cobalt, raises concerns due to environmental degradation and unsafe working conditions, and that large-scale mining disrupts ecosystems and can contaminate water supplies, leaving lasting environmental damage. In addition, he notes that a looming cobalt shortage threatens to strain global supply chains as demand for battery technologies continues to grow.
Large language models can be squeezed onto your phone — rather than needing 1000s of servers to run — after breakthrough
Posted in information science, mobile phones, robotics/AI | Leave a Comment on Large language models can be squeezed onto your phone — rather than needing 1000s of servers to run — after breakthrough
Running massive AI models locally on smartphones or laptops may be possible after a new compression algorithm trims down their size — meaning your data never leaves your device. The catch is that it might drain your battery in an hour.
Light-emitting diodes (LEDs), semiconductor-based devices that emit light when an electric current flows through them, are key building blocks of numerous electronic devices. LEDs are used to light up smartphone, computer, and TV displays, as well as light sources for indoor and outdoor environments.
Past studies consistently observed a decline in the performance and efficiency of LED devices based on two-dimensional (2D) materials at high current densities. This loss of efficiency at high current densities has been linked to high levels of interaction between excitons, which cause a process known as exciton-exciton annihilation (EEA).
Essentially, the properties of some 2D materials prompt excitons to strongly interact with each other, causing excitons to “deactivate” one another. This results in a significant waste of energy that could otherwise contribute to the lighting of LEDs.
A plan to use millions of smartphones to map out real-time variations in Earth’s ionosphere has been tested by researchers in the US. Developed by Brian Williams and colleagues at Google Research in California, the system could improve the accuracy of global navigation satellite systems (GNSSs) such as GPS and provide new insights into the ionosphere.
\r \r.
A GNSS uses a network of satellites to broadcast radio signals to ground-based receivers. Each receiver calculates its position based on the arrival times of signals from several satellites. These signals first pass through Earth’s ionosphere, which is a layer of weakly-ionized plasma about 50–1500 km above Earth’s surface. As a GNSS signal travels through the ionosphere, it interacts with free electrons and this slows down the signals slightly – an effect that depends on the frequency of the signal.
A research team headed by Prof. Karl Leo at TUD Dresden University of Technology have developed an innovative, nature-inspired solution that could revolutionize the electronics industry: “Leaftronics.” This innovative approach leverages the natural structure of leaves to create biodegradable electronic substrates with enhanced properties and offers a sustainable, efficient, and scalable solution to the global-waste problem. These findings have now been published in the journal Science Advances.
Electronic devices, from toys to smartphones, consist of circuits. Specific substrates are used to manufacture these circuits. In commercial electronics, these are printed circuit boards (PCBs) made of glass fiber-reinforced epoxy resin.
Most of these materials are not recyclable, let alone biodegradable. Given the sheer volume of electronic waste of more than 60 million tons per year (of which over 75% is not collected worldwide), there is an urgent need for sustainable alternatives.