Toggle light / dark theme

Scientists have developed a method to improve the stability and efficiency of organic light-emitting diodes (OLEDs), a technology used in smartphones, TVs, and other electronic displays.

This advancement utilizes a unique type of molecule that has the potential to extend the lifespan of OLED devices significantly.

The researchers present a novel way to design that can maintain their stability and efficiency over time, even in high-stress conditions. The research is published in the journal Nature Communications.

Researchers from Seoul National University College of Engineering announced they have developed an optical design technology that dramatically reduces the volume of cameras with a folded lens system utilizing “metasurfaces,” a next-generation nano-optical device.

By arranging metasurfaces on the so that light can be reflected and moved around in the glass substrate in a folded manner, the researchers have realized a with a thickness of 0.7mm, which is much thinner than existing refractive lens systems. The research was published on Oct. 30 in the journal Science Advances.

Traditional cameras are designed to stack multiple glass lenses to refract light when capturing images. While this structure provided excellent high-quality images, the thickness of each lens and the wide spacing between lenses increased the overall bulk of the camera, making it difficult to apply to devices that require ultra-compact cameras, such as virtual and augmented reality (VR-AR) devices, smartphones, endoscopes, drones, and more.

O.o face_with_colon_three


Ctrl-labs is developing an armband that interprets electrical signals from neurons in the arm, allowing wearers to control computers, smartphones, and even robotic arms with their minds. VentureBeat got hands-on time with the technology during a recent visit to the startup’s New York City office.

This robotic Labrador puppy has been created in collaboration with the legendary Jim Henson’s Creature Shop.


A US-based company, Tombot, has unveiled Jennie – a realistic robotic puppy. This battery-powered Lab reacts to human touch, wags its tail, and even barks when you tell it to.

This robotic companion is designed to bring joy and comfort to those who need it most. Jennie has been designed to offer companionship to people battling dementia, stress, anxiety, Posttraumatic Stress Disorder (PTSD), and depression.

Jennie is equipped with various features, including real puppy sounds, software updates, interactive sensors, voice commands, a rechargeable battery, and can be controlled through a smartphone app.

Blue Origin today announced a multi-launch agreement to deliver multiple next-generation Block 2 BlueBird satellites to low Earth orbit (LEO) on New Glenn. All launches will occur over a multi-year period from Blue Origin’s Launch Complex 36 at Cape Canaveral Space Force Station.

AST SpaceMobile is building the first and only space-based cellular broadband network designed for both commercial and government applications. It will operate directly with everyday smartphones and allow seamless switching between terrestrial cell towers and satellite signals depending on location and coverage needs.

“New Glenn’s performance and unprecedented capacity within its seven-meter fairing enables us to deploy more of our Block 2 BlueBird satellites in orbit, helping provide continuous cellular broadband service coverage across some of the most in-demand cellular markets globally,” said Abel Avellan, Founder, Chairman, and CEO, AST SpaceMobile.

I love the analogy they use here of space flight — a deeply impressive human accomplishment that has, nevertheless, primarily relied on engineering solutions because the science behind it is relatively well understood. It’s a great reminder that BCIs are not “rocket science” because, unlike rocket science, we don’t yet have the science to underpin the engineering that advances will rely on.

Yet despite this, Gordon and Seth throw a bone to engineers who can’t wait for the science to catch up. And they do this by suggesting that artificial intelligence may “soften” if not completely eliminate the science challenges facing the development of successful BCIs.

At this point it’s hard to tell how far AI-driven engineering solutions might support BCIs designed to enhance performance — and Gordon and Seth suggest that near term technologies may be “limited to controlling apps on phones or other similarly prosaic activities”. But they also acknowledge that, in spite of the considerable challenges, BCIs still hold promise for human enhancement in the future.

In 2025 and 2026, the company also plans to launch up to 60 next-generation BlueBird satellites with an even larger communications array. The satellites will enable AST SpaceMobile to offer “full continuous service” for potentially hundreds of millions of cellphone customers.

However, satellite industry analyst Tim Farrar notes that AST SpaceMobile still needs FCC approval before it can launch and operate more BlueBird satellites. In August, the US regulator tabled the company’s request to deploy 243 more satellites.

Modern imaging systems, such as those used in smartphones, virtual reality (VR), and augmented reality (AR) devices, are constantly evolving to become more compact, efficient, and high-performing. Traditional optical systems rely on bulky glass lenses, which have limitations like chromatic aberrations, low efficiency at multiple wavelengths, and large physical sizes. These drawbacks present challenges when designing smaller, lighter systems that still produce high-quality images.

I believe that nanotechnology could be imbedded into paper so a paper computer could give one the same information as a smartphone but at pennies per smartphone. Right now we can print out 3D copies of paper phones and other things next would be nanotechnology made of paper with quantum mechanical engineering.


Irish company Mcor’s unique paper-based 3D printers make some very compelling arguments. For starters, instead of expensive plastics, they build objects out of cut-and-glued sheets of standard 80 GSM office paper. That means printed objects come out at between 10–20 percent of the price of other 3D prints, and with none of the toxic fumes or solvent dips that some other processes require.

Secondly, because it’s standard paper, you can print onto it in full color before it’s cut and assembled, giving you a high quality, high resolution color “skin” all over your final object. Additionally, if the standard hard-glued object texture isn’t good enough, you can dip the final print in solid glue, to make it extra durable and strong enough to be drilled and tapped, or in a flexible outer coating that enables moving parts — if you don’t mind losing a little of your object’s precision shape.

The process is fairly simple. Using a piece of software called SliceIt, a 3D model is cut into paper-thin layers exactly the thickness of an 80 GSM sheet. If your 3D model doesn’t include color information, you can add color and detail to the model through a second piece of software called ColorIt.