Toggle light / dark theme

Qubit-based simulations of gauge theories are challenging as gauge fields require high-dimensional encoding. Now a quantum electrodynamics model has been demonstrated using trapped-ion qudits, which encode information in multiple states of ions.

For the first time, theoretical physicists from the Institute of Theoretical Physics (IPhT) in Paris-Saclay have completely determined the statistics that can be generated by a system using quantum entanglement. This achievement paves the way for exhaustive test procedures for quantum devices.

The study is published in the journal Nature Physics.

After the advent of transistors, lasers and , the entanglement of quantum objects—as varied as photons, electrons and superconducting circuits—is at the heart of a second quantum revolution, with and quantum computing in sight.

Georgia Tech researchers recently proposed a method for generating quantum entanglement between photons. This method constitutes a breakthrough that has potentially transformative consequences for the future of photonics-based quantum computing.

“Our results point to the possibility of building quantum computers using light by taking advantage of this entanglement,” said Chandra Raman, a professor in the School of Physics. The research is published in the journal Physical Review Letters.

Quantum computers have the potential to outperform their conventional counterparts, becoming the fastest programmable machines in existence. Entanglement is the key resource for building these quantum computers.

Similar to humans going on journeys of self-discovery, quantum computers are also capable of deepening their understanding of their own foundations.

Researchers from Tohoku University and St. Paul’s School, London, have developed a that allows quantum computers to analyze and protect quantum entanglement—a fundamental underpinning of quantum computing. These findings will advance our understanding of quantum entanglement and quantum technologies.

The study was published in Physical Review Letters on March 4, 2025.

At hypersonic speeds, complexities occur when the gases interact with the surface of the vehicle, such as boundary layers and shock waves. Researchers in the Department of Aerospace Engineering at The Grainger College of Engineering, University of Illinois Urbana-Champaign, were able to observe new disturbances in simulations conducted for the first time in 3D.

The study, “Loss of axial symmetry in hypersonic flows over conical shapes,” is published in Physical Review Fluids.

Fully 3D simulations require a great deal of processing power, making the work expensive to compute. Two things made it possible for Deborah Levin and her Ph.D. student Irmak Taylan Karpuzcu to conduct the research: Time on Frontera, the leadership-class computer system at the Texas Advanced Computing Center and software developed in previous years by several of Levin’s former graduate students.

Additionally, the quantum computing cloud service offered by the University of Osaka has begun integrating OQTOPUS into its operations and Fujitsu Limited will make it available for research partners using its quantum computers in the second half of 2025.

Moving forward, the research team will drive the advancement of quantum computing through the continuous expansion of OQTOPUS’s capabilities and the development of a thriving global community. Dr. Keisuke Fujii at the Center for Quantum Information and Quantum Biology (QIQB) of The University of Osaka mentions, “this will facilitate the standardization of various quantum software and systems while driving the creation of innovative quantum applications.”

The research was funded by the Japan Science and Technology Agency and the National Institutes for Quantum Science and Technology.

By way of an answer, I’ll offer one of the physicist Richard Feynman’s most famous dictums: What I cannot create, I do not understand. For much of its history, biology has been a reductionist science, driven by the principle that the best way to understand the mind-boggling complexity of living things is to dissect them into their constituent parts—organs, cells, proteins, molecules. But life isn’t a clockwork; it’s a dynamic system, and unexpected things emerge from the interactions between all those little parts. To truly understand life, you can’t just break it down. You have to be able to put it back together, too.

The C. elegans nematode is a tiny worm, barely as long as a hair is wide, with less than a thousand cells in its body. Of those, only 302 are neurons—about as small as a brain can get. “I remember, when my first child was born, how proud I was when they reached the age they could count to 302,” said Netta Cohen, a computational neuroscientist who runs a worm lab at the University of Leeds. But there’s no shame in smallness, Cohen emphasized: C. elegans does a lot with a little. Unlike its more unpleasant cousins, it’s not a parasite, outsourcing its survival needs to bigger organisms. Instead, it’s what biologists call a “free-living” animal. “It can reproduce, it can eat, it can forage, it can escape,” Cohen said. “It’s born and it develops, and it ages and it dies—all in a millimeter.”

Worm people like Cohen are quick to tell you that no fewer than four Nobel Prizes have been awarded for work on C. elegans, which was the first animal to have both its genome sequenced and its neurons mapped. But there’s a difference between schematics and an operating manual. “We know the wiring; we don’t know the dynamics,” Cohen said. “You would think that’s an ideal problem for a physicist or a computer scientist or a mathematician to solve.”