Toggle light / dark theme

Frequent flares from TRAPPIST-1 could impact habitability of nearby planets

Like a toddler right before naptime, TRAPPIST-1 is a small yet moody star. This little star, which sits in the constellation Aquarius about 40 light-years from Earth, spits out bursts of energy known as “flares” about six times a day.

New research led by the University of Colorado Boulder takes the deepest look yet at the physics behind TRAPPIST-1’s celestial temper tantrums. The team’s findings could help scientists search for habitable planets beyond Earth’s solar system.

The researchers used observations from NASA’s James Webb Space Telescope and computer simulations (models) to understand how TRAPPIST-1 produces its flares—first building up magnetic energy, then releasing it to kick off a chain of events that launches radiation deep into space. The results could help scientists unravel how the star has shaped its nearby planets, potentially in drastic ways.

Magnetism switching in antiferromagnets: Two distinct mechanisms successfully visualized

A research team led by Ryo Shimano of the University of Tokyo has successfully visualized two distinct mechanisms through which up and down spins, inherent properties of electrons, switch in an antiferromagnet, a material in which spin alignments cancel each other out. One of the visualized mechanisms provides a working principle for developing ultrafast, non-volatile magnetic memory and logic devices, which could be much faster than today’s technologies.

The findings are published in the journal Nature Materials.

Paper slips with holes, small metal rods, vacuum tubes, and transistors: These are technologies that have been used to encode 0s and 1s, the basis of classical computation. However, the world’s ever-growing computational needs demand yet more powerful tools. Antiferromagnets are a class of materials whose magnetic properties, or lack thereof, could be leveraged to encode 0s and 1s in a novel way.

Hackers are exploiting ArrayOS AG VPN flaw to plant webshells

Threat actors have been exploiting a command injection vulnerability in Array AG Series VPN devices to plant webshells and create rogue users.

Array Networks fixed the vulnerability in a May security update, but has not assigned an identifier, complicating efforts to track the flaw and patch management.

An advisory from Japan’s Computer Emergency and Response Team (CERT) warns that hackers have been exploiting the vulnerability since at least August in attacks targeting organizations in the country.

New quantum device operates at room temperature for stable qubits

Stanford University researchers say they have developed a nanoscale optical device that could shift the direction of quantum communication.

Unlike today’s quantum computers that operate near absolute zero, this new approach works at room temperature.

The device entangles the spin of photons and electrons, which is essential for transmitting and processing quantum information.

Self-adapting fiber component tackles heat challenges in high-power fiber lasers

Thulium fiber lasers, operating at a wavelength of 2 micrometers, are valued for applications in medicine, materials processing, and defense. Their longer wavelength makes stray light less damaging compared to the more common ytterbium lasers at 1 micrometer.

Yet, despite this advantage, thulium lasers have been stuck at around 1 kilowatt of output power for more than a decade, limited by nonlinear effects and heat buildup. One promising route to break this barrier is inband pumping—switching from diode pumping at 793 nm to laser pumping at 1.9 µm. This approach improves efficiency and reduces heat, but it introduces new challenges for fiber components, especially the cladding light stripper (CLS).

Terahertz device sets performance record and opens new quantum horizons

A prototype device that has demonstrated record-breaking longevity could help open up new frontiers in next-generation communications and computing technologies.

An international team of researchers from Scotland, the U.S. and Japan are behind the development of the terahertz-wave device, which was fabricated more than 11 years ago and still works as well as it did the day it was made.

The team’s tiny terahertz emitter device, which has elements that are less than the width of a human hair and can be powered by a single volt, could help overcome one of the key challenges holding back the widespread adoption of terahertz-wave technologies.

U.S government awards Gelsinger-backed EUV developer xLight with $150 million in federal incentives

XLight, a U.S.-based startup developing an EUV light source based on a particle accelerator, on Tuesday signed a Letter of Intent (LOI) with the U.S. Department of Commerce for $150 million in proposed federal incentives under the CHIPS and Science Act. xLight came out of the blue earlier this year when it hired Pat Gelsinger, former chief executive of Intel, as executive chairman. The money, if awarded, will be used to bring xLight’s free-electron laser (FEL) based light source closer to reality once it is built in Albany and its viability is proven in practice.

“With the support from the [Department of] Commerce, our investors, and development partners, xLight is building its first free-electron laser system at the Albany Nanotech Complex, where the world’s best lithography capabilities will enable the research and development that will define the future of chip manufacturing,” said Nicholas Kelez, CEO and CTO of xLight.

Synchrotron radiation sources: Toolboxes for quantum technologies

Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials.

An international team has published an overview of synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials.

Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.

/* */