Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Drug-delivery patch could help to heal the heart following a heart attack

MIT engineers have developed a flexible drug-delivery patch that can be placed on the heart after a heart attack to help promote healing and regeneration of cardiac tissue.

The new patch is designed to carry several different drugs that can be released at different times, on a pre-programmed schedule. In a study of rats, the researchers showed that this treatment reduced the amount of damaged by 50% and significantly improved cardiac function.

If approved for use in humans, this type of patch could help victims recover more of their cardiac function than is now possible, the researchers say.

Rare side effects of antipsychotic medications provide new evidence for safer global prescribing

Patients with severe mental illnesses, such as schizophrenia and bipolar disorder, often require long-term use of antipsychotic medications. Some of these drugs, however, can pose potential risks, such as elevated prolactin levels and compromised immune function. Previous studies have relied mostly on small or single-center data, making it difficult to accurately assess the true incidence of rare adverse effects.

Researchers from the LKS Faculty of Medicine at the University of Hong Kong (HKUMed), through multidisciplinary collaboration and rigorous epidemiological methods, leveraged territory-wide data from the Hospital Authority to conduct two internationally impactful studies. The findings were published in the journals World Psychiatry and The Lancet Psychiatry. These discoveries provide solid evidence for drug regulation and and establish Hong Kong as a global leader in big data research on psychiatric safety.

Protein-based gel restores dental enamel and could advance tooth repair

Scientists from the University of Nottingham’s School of Pharmacy and Department of Chemical and Environmental Engineering, in collaboration with an international team of researchers, have developed a bio-inspired material that has the potential to regenerate demineralized or eroded enamel, strengthen healthy enamel, and prevent future decay. The findings have been published in Nature Communications.

The gel can be rapidly applied to teeth in the same way dentists currently apply standard fluoride treatments. However, this new protein-based gel is fluoride free and works by mimicking key features of the natural proteins that guide the growth of dental enamel in infancy.

When applied, the gel creates a thin and robust layer that impregnates teeth, filling holes and cracks in them. It then functions as a scaffold that takes calcium and phosphate ions from saliva and promotes the controlled growth of new mineral in a process called epitaxial mineralization. This enables the new mineral to be organized and integrated into the underlying natural tissue while recovering both the structure and properties of natural healthy enamel.

Quantum light breakthrough could transform technology

Scientists have achieved a breakthrough in light manipulation by using topological insulators to generate both even and odd terahertz frequencies through high-order harmonic generation (HHG). By embedding these exotic materials into nanostructured resonators, the team was able to amplify light in unprecedented ways, confirming long-theorized quantum effects. This discovery opens the door to new terahertz technologies with vast implications for ultrafast electronics, wireless communication, and quantum computing.

‘Young’ Immune Cells Partly Reverse Alzheimer’s Symptoms in Mice

Specially engineered ‘young’ immune cells could help to reverse the effects of aging and the damage to brain cells caused by diseases such as Alzheimer’s, according to a new study in mice.

In their natural state, these immune cells are known as mononuclear phagocytes, and they flow around the body, cleaning up waste.

As we get older, however, these immune-cell cleaners get a bit sloppy, clearing away less cellular debris and triggering more inflammation than before. Inflammation and protein aggregation are features of many age-related diseases, including Alzheimer’s.

Scientists Unlock Secrets of the Building Blocks of the Universe

Scientists at Indiana University have made a major advance in understanding how the universe came to exist. Their success comes from a collaboration between two large international research teams studying neutrinos, the nearly massless particles that stream endlessly through space and matter while rarely interacting with anything around them. The findings, published in Nature, bring researchers closer to solving one of science’s most profound mysteries: why the universe is filled with matter, stars, planets, and life, rather than nothing at all.

This breakthrough arose from an unprecedented partnership between two world-leading neutrino experiments: NOvA in the United States and T2K in Japan. By combining their data, scientists are gaining new insight into the hidden behavior of neutrinos and their antimatter counterparts, potentially revealing why the early universe avoided self-destruction immediately after the Big Bang.

In each experiment, beams of neutrinos are generated using powerful particle accelerators and then observed after traveling vast distances underground. Detecting them is an enormous challenge; out of countless particles, only a few interact in a way that leaves measurable traces. Using sophisticated detectors and advanced computing tools, researchers reconstruct these rare interactions to understand how neutrinos change as they move through space.

/* */