Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Novel carbon nanotube-based transistors reach THz frequencies

Carbon nanotubes (CNTs), cylindrical nanostructures made of carbon atoms arranged in a hexagonal lattice, have proved to be promising for the fabrication of various electronic devices. In fact, these structures exhibit outstanding electrical conductivity and mechanical strength, both of which are highly favorable for the development of transistors (i.e., the devices that control the flow of current in electronics).

In recent years, several have started using CNTs to develop various electronics, including metal-oxide-semiconductor field-effect transistors (MOSFETs). MOSFETs are transistors that control the flow of current through a semiconducting channel utilizing an applied to a gate electrode.

Notably, when arrays of CNTs are used to develop MOSFETs, they can operate at (RF), the range of electromagnetic waves that support wireless communication. The resulting MOSFETs could thus be particularly advantageous for the advancement of wireless communication systems and technologies.

Scientists create a new form of light matter in a quasicrystal

Researchers have for the first time created a reconfigurable polariton 2D quasicrystal. The team from the Skolkovo Institute of Science and Technology (Skoltech), in collaboration with colleagues from the University of Iceland, the University of Warsaw, and the Institute of Spectroscopy of the Russian Academy of Sciences, demonstrated that this unique state of matter exhibits long-range order and a novel type of phase synchronization, opening new pathways for research into exotic phenomena such as supersolids and superfluidity in aperiodic settings.

The breakthrough, published in Science Advances, was achieved using exciton-polaritons—hybrid quasiparticles that are part light and part matter. By arranging these polaritons in a Penrose tiling, a famous aperiodic pattern with five-fold symmetry, the team observed the emergence of a macroscopic coherent state where the individual nodes synchronized in a nontrivial way, unlike anything seen in conventional periodic crystals.

Scientists Finally Hear Black Holes Ring, Confirming Hawking’s Famous Prediction

Ten years after the first detection of gravitational waves, scientists have captured the clearest signal yet — and it confirms one of Stephen Hawking’s most famous predictions.

Using the upgraded LIGO detectors, researchers observed two black holes colliding over a billion light-years away, producing space-time ripples so precise they could “hear” the black holes ring like cosmic bells.

A new window on the universe.

Why Organizations Are Abandoning Static Secrets for Managed Identities

“Using a secret manager dramatically improves the security posture of systems that rely on shared secrets, but heavy use perpetuates the use of shared secrets rather than using strong identities,” according to identity security researchers. The goal isn’t to eliminate secret managers entirely, but to dramatically reduce their scope.

Smart organizations are strategically reducing their secret footprint by 70–80% through managed identities, then using robust secret management for remaining use cases, creating resilient architectures that leverage the best of both worlds.

The Non-Human Identity Discovery Challenge

Nuclear power in your pocket? 50-year battery innovation

While the technology of nuclear batteries has been available since the 1950s, today’s drive to electrify and decarbonize increases the impetus to find emission-free power sources and reliable energy storage. As a result, innovations are bringing renewed focus to nuclear energy in batteries.

Nuclear batteries — those using the natural decay of radioactive material to create an electric current — have been used in space applications or remote operations such as arctic lighthouses, where changing a battery is difficult or even impossible. The Mars Science Laboratory rover, for example, uses radioisotopic power systems (RPS), which convert heat from radioactive decay into electricity via a thermoelectric generator. Betavolt’s innovation, 3, is a betavoltaic battery that uses beta particles rather than heat as its energy source. (Probably a repost from March 11 2024)


There are additional challenges that hinder the wider usage of these and all types of nuclear batteries, particularly material supply and discomfort with the use of radioactive materials. Yet, the physical and materials science behind this technology could unlock important advances for CO2-free energy and provide power for applications where currently available energy storage technologies are insufficient.

How do betavoltaic batteries work?

Betavoltaic batteries contain radioactive emitters and semiconductor absorbers. As the emitter material naturally decays, it releases beta particles, or high-speed electrons, which strike the absorber material in the battery, separating electrons from atomic nuclei in the semiconductor absorber. Separation of the resulting electron-hole pairs generates an electric current in the absorber, resulting in electrical power that can be delivered by the battery.

Flexible Piezoelectric Energy Harvesters with Mechanoluminescence for Mechanical Energy Harvesting and Stress Visualization Sensing

Flexible piezoelectric energy harvesters (FPEHs) have wide applications in mechanical energy harvesting, portable device driving, and piezoelectric sensors. However, the poor output performance of piezoelectric energy harvesters and the intrinsic shortcoming of piezoelectric sensors that can only detect dynamic pressure limit their further applications. BaTiO3 (BT) and PVDF are deposited on the glass fiber electronic cloth (GFEC) by impregnation and spin-coating methods, respectively, to form BT-GFEC/PVDF piezoelectric composite films. A mixed solution of mechanoluminescence (ML) particles ZnS: Cu and PDMS are used as the encapsulation layer to construct a high-performance ML-FPEH with self-powered electrical and optical dual-mode response characteristics. Due to the interconnection structure of the piezoelectric films, the prepared ML-FPEH illustrates a high effective energy harvesting performance (≈58 V, ≈43.56 µW cm−2). It can also effectively harvest mechanical energy from human activities. More importantly, ML-FPEH can sense stress distribution of hand-writing via ML to achieve stress visualization, making up for the shortcomings of piezoelectric sensors. This work provides a new strategy for endowing FPEH with dual-mode sensing and energy harvesting.

/* */