In a major step toward understanding how the physical form of DNA shapes human biology, researchers at Northwestern University working with the 4D Nucleome Project have created the most comprehensive maps yet of the genome’s three-dimensional organization over time and space. The work is described in a new study published in Nature.
The research, based on experiments in human embryonic stem cells and fibroblasts, provides an expansive picture of how genes interact with one another, fold into complex structures, and shift their positions as cells carry out normal functions and divide. The study was co-led by Feng Yue, the Duane and Susan Burnham Professor of Molecular Medicine in the Department of Biochemistry and Molecular Genetics.
“Understanding how the genome folds and reorganizes in three dimensions is essential to understanding how cells function,” said Yue, who is also director of the Center for Advanced Molecular Analysis and founding director of the Center for Cancer Genomics at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University. “These maps give us an unprecedented view of how genome structure helps regulate gene activity in space and time.”







