FROSTI revolutionizes mirror control in gravitational-wave detectors, opening the door to a far deeper view of the cosmos. FROSTI is a new adaptive optics system that precisely corrects distortions in LIGO’s mirrors caused by extreme laser power. By using custom thermal patterns, it preserves mirror shape without introducing noise, allowing detectors to operate at higher sensitivities. This leap enables future observatories like Cosmic Explorer to see deeper into the cosmos. The technology lays the groundwork for vastly expanding gravitational-wave astronomy.
Gravitational-wave detectors may soon get a major performance boost, thanks to a new instrumentation advance led by physicist Jonathan Richardson of the University of California, Riverside. In a paper published in the journal Optica, Richardson and his colleagues describe FROSTI, a full-scale prototype that successfully controls laser wavefronts at extremely high power inside the Laser Interferometer Gravitational-Wave Observatory, or LIGO.
LIGO is an observatory that measures gravitational waves — tiny ripples in spacetime created by massive accelerating objects such as colliding black holes. It was the first facility to directly detect these waves, providing strong support for Einstein’s Theory of Relativity. Using two 4-km-long laser interferometers located in Washington and Louisiana, LIGO senses incredibly small disturbances, giving scientists a new way to study black holes, cosmology, and matter under extreme conditions.