Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

MIT physicists improve the precision of atomic clocks

Every time you check the time on your phone, make an online transaction, or use a navigation app, you are depending on the precision of atomic clocks.

An atomic clock keeps time by relying on the “ticks” of atoms as they naturally oscillate at rock-steady frequencies. Today’s atomic clocks operate by tracking cesium atoms, which tick over 10 billion times per second. Each of those ticks is precisely tracked using lasers that oscillate in sync, at microwave frequencies.

Scientists are developing next-generation atomic clocks that rely on even faster-ticking atoms such as ytterbium, which can be tracked with lasers at higher, optical frequencies. If they can be kept stable, optical atomic clocks could track even finer intervals of time, up to 100 trillion times per second.

Advances and Integrations of Computer-Assisted Planning,… : Operative Neurosurgery

ONSNew ONSReview Advances and Integrations of Computer-Assisted Planning, Artificial Intelligence, and Predictive Modeling Tools for Laser Interstitial Thermal Therapy in Neurosurgical Oncology by Warman et al Johns Hopkins Medicine Congress of Neurological Surgeons (CNS) Isaac Yang.


E to surrounding healthy tissue, LiTT offers promising therapeutic outcomes for both newly diagnosed and recurrent tumors. However, challenges such as postprocedural edema, unpredictable heat diffusion near blood vessels and ventricles in real time underscore the need for improved planning and monitoring. Incorporating artificial intelligence (AI) presents a viable solution to many of these obstacles. AI has already demonstrated effectiveness in optimizing surgical trajectories, predicting seizure-free outcomes in epilepsy cases, and generating heat distribution maps to guide real-time ablation. This technology could be similarly deployed in neurosurgical oncology to identify patients most likely to benefit from LiTT, refine trajectory planning, and predict tissue-specific heat responses.

Why chronic pain lasts longer in women: Immune cells offer clues

Chronic pain lasts longer for women than men, and new research suggests differences in hormone-regulated immune cells, called monocytes, may help explain why.

In a new paper in Science Immunology, researchers at Michigan State University found a subset of monocytes release a molecule to switch off pain. These cells are more active in males due to higher levels of sex hormones such as testosterone, the team found.

Females, however, experienced longer-lasting pain and delayed recovery, because their monocytes were less active. Geoffroy Laumet, MSU associate professor of physiology, and Jaewon Sim, a former graduate student in his lab, discovered the same pattern in both mouse models and human patients.

Polyamine metabolism as a regulator of cellular and organismal aging

Polyamines — putrescine, spermidine, and spermine — are ubiquitous cationic molecules that are essential for cellular proliferation and homeostasis. Their intracellular concentrations decline with age, contributing to physiological and cognitive deterioration. Recent studies have revealed that spermidine supplementation extends lifespan and improves cognitive and cardiac function in various model organisms, suggesting that maintaining polyamine balance has anti-aging potential. Polyamine metabolism is tightly regulated through biosynthesis, degradation, and transport; however, age-associated upregulation of spermine oxidase (SMOX) and accumulation of its toxic byproduct acrolein promote oxidative damage and cellular senescence. Suppressing SMOX activity or polyamine degradation attenuates senescence markers and DNA damage, highlighting spermine catabolism as a therapeutic target. Polyamines also modulate epigenetic regulation, including DNA methylation and histone acetylation, thereby influencing gene expression and chromatin structure during aging. Moreover, polyamine-dependent hypusination of eIF5A sustains protein synthesis in senescent cells. These multifaceted actions indicate that polyamine metabolism integrates redox control, translational regulation, epigenetic maintenance and autophagy to determine cellular and organismal longevity. While animal studies demonstrate clear anti-aging effects of spermidine and spermine, human clinical evidence remains limited, with variable outcomes likely due to bioavailability and metabolic conversion. Future strategies combining dietary or probiotic polyamine enhancement, enzyme-targeted inhibitors, and personalized metabolic interventions hold promise for extending healthspan. Collectively, maintaining optimal polyamine homeostasis emerges as a key approach to counteract aging and age-related diseases.

SGLT2 Inhibitors for Nondiabetic Heart Failure: Equipping PCPs for Success

Once diabetes drugs, SGLT2 inhibitors are now key therapies for heart failure—even in patients without diabetes. A new primary-care guide reviews indications, benefits, and practical prescribing tips to help clinicians integrate these agents into routine HF care.

Are PCPs ready to adopt SGLT2 inhibitors beyond diabetes?


While proven to help, primary care clinicians have been slow to use the drugs once considered only for patients with diabetes.

Role of Dopamine in Pain

Dopamine is a member of a class of molecules called the catecholamines, which serve as neurotransmitters and hormones. In the brain, dopamine serves as a neurotransmitter and is released from nerve cells to send signals to other nerves. Outside of the nervous system, it acts as a local chemical messenger in several parts of the body.

Image Copyright: Meletios, Image ID: 71,648,629 via shutterstock.com

A number of important neurodegenerative diseases are associated with abnormal function of the dopamine system and some of the main medications used to treat those illnesses work by changing the effects of dopamine. The condition Parkinson’s disease is caused by a loss of dopamine secreting cells in a brain area called the substantia nigra.

/* */