Menu

Blog

Page 5

Jul 3, 2024

New possibilities for reservoir computing with topological magnetic and ferroelectric systems

Posted by in categories: internet, physics, robotics/AI

Speech recognition, weather forecasts, smart home applications: Artificial intelligence and the Internet of Things are enhancing our everyday lives. Systems based on reservoir computing are a very promising new field.

The research group led by Prof Dr. Karin Everschor-Sitte at the University of Duisburg-Essen (UDE), is conducting research in this area. They are primarily investigating new possibilities for , for example using .

Now, together with specialists from the field of ferroelectric materials, the team has shown that these systems are also suitable for processing complex data faster and more efficiently. Their results have been published in Nature Reviews Physics.

Jul 3, 2024

High-precision infrared imaging technology reveals the magnetic domain structure of non-collinear antiferromagnets

Posted by in categories: particle physics, transportation

Non-collinear antiferromagnetic materials, which have a net magnetic moment of nearly zero, yet exhibit significant anomalous transverse transport properties, are considered candidate materials for the next generation of spintronic devices.

The magnetic domain structure of these materials is crucial for information storage. However, magnetic domain imaging for non-collinear antiferromagnetic materials such as Mn3Sn and Mn3Ge has always been a significant challenge in this field of research.

Prof. Dazhi Hou’s team from the University of Science and Technology of China, in with Prof. Yanfeng Guo’s team from ShanghaiTech University, has successfully achieved magnetic domain imaging of Mn3Sn and Mn3Ge using the anomalous Ettingshausen effect and lock-in thermography (LIT) technique. They verified the superiority of this innovative method in simultaneously resolving the magnetic domain structure in both in-plane and out-of-plane directions.

Jul 3, 2024

Scientists crack new method for high-capacity, secure quantum communication

Posted by in categories: computing, internet, particle physics, quantum physics

Scientists have made a significant breakthrough in creating a new method for transmitting quantum information using particles of light called qudits. These qudits promise a future quantum internet that is both secure and powerful. The study is published in the journal eLight.

Traditionally, is encoded on qubits, which can exist in a state of 0, 1, or both at the same time (superposition). This quality makes them ideal for complex calculations but limits the amount of data they can carry in communication. Conversely, qudits can encode information in higher dimensions, transmitting more data in a single go.

The new technique harnesses two properties of light—spatial mode and polarization—to create four-dimensional qudits. These qudits are built on a special chip that allows for precise manipulation. This manipulation translates to faster data transfer rates and increased resistance to errors compared to conventional methods.

Jul 3, 2024

New AI program helps identify elusive space plasmoids

Posted by in categories: physics, robotics/AI, satellites

In an ongoing game of cosmic hide and seek, scientists have a new tool that may give them an edge. Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a computer program incorporating machine learning that could help identify blobs of plasma in outer space known as plasmoids. In a novel twist, the program has been trained using simulated data.

The program will sift through reams of data gathered by spacecraft in the magnetosphere, the region of strongly affected by Earth’s magnetic field, and flag telltale signs of the elusive blobs. Using this technique, scientists hope to learn more about the processes governing , a process that occurs in the magnetosphere and throughout the universe that can damage communications satellites and the electrical grid.

Scientists believe that machine learning could improve plasmoid-finding capability, aid the basic understanding of magnetic reconnection and allow researchers to better prepare for the aftermath of reconnection-caused disturbances.

Jul 3, 2024

Neutrons on classically inexplicable paths: Quantum theory prevails in Leggett-Garg inequality test

Posted by in categories: particle physics, quantum physics

Is nature really as strange as quantum theory says—or are there simpler explanations? Neutron measurements at TU Wien prove that it doesn’t work without the strange properties of quantum theory.

Can a particle be in two different places at the same time? In quantum physics, it can: Quantum theory allows objects to be in different states at the same time—or more precisely: in a , combining different observable states. But is this really the case? Perhaps the particle is actually in a very specific state, at a very specific location, but we just don’t know it?

The question of whether the behavior of quantum objects could perhaps be described by a simple, more classical theory has been discussed for decades. In 1985, a way of measuring this was proposed: the so-called “Leggett-Garg inequality.” Any theory that describes our world without the strange superposition states of must obey this inequality.

Jul 3, 2024

Dual-laser approach could lower cost of high-resolution 3D printing

Posted by in categories: 3D printing, energy

Researchers have developed a new two-photon polymerization technique that uses two lasers to 3D print complex high-resolution structures. The advance could make this 3D printing process less expensive, helping it find wider use in a variety of applications.

Two-photon polymerization is an advanced additive manufacturing technique that traditionally uses femtosecond lasers to polymerize materials in a precise, 3D manner. Although this process works well for making high-resolution microstructures, it isn’t widely used in manufacturing because femtosecond lasers are expensive and increase the cost of printing parts.

“We combined a relatively low-cost laser emitting with a emitting infrared pulses to reduce the power requirement of the femtosecond laser,” said research team leader Xianfan Xu from Purdue University. “In this way, with a given femtosecond laser power, the printing throughput can be increased, leading to a lower cost for printing individual parts.”

Jul 3, 2024

Warning: 97% of Tested North American Natural Gas Samples Contain Cancer-Causing Benzene

Posted by in category: biotech/medical

New findings reveal that individuals with an average sense of smell may unknowingly be living with natural gas leaks. According to a peer-reviewed study in the scientific journal Environmental Research Letters, minor leaks can deteriorate indoor air quality by emitting various hazardous pollutants, such as benzene—a carcinogen detected in 97% of natural gas samples throughout North America.

“While these smaller leaks are not large enough to cause gas explosions, hard-to-smell leaks are common,” said lead author and PSE Healthy Energy Scientist Sebastian Rowland. “The fact that they are so small makes them hard to identify and fix, which can lead to a persistent indoor source of benzene and methane.”

Jul 3, 2024

Stanford Engineers a Pocket-Sized Titanium-Sapphire Super Laser

Posted by in categories: computing, neuroscience, quantum physics

In a single leap from tabletop to the microscale, engineers at Stanford University have produced the world’s first practical titanium-sapphire laser on a chip.

Researchers have developed a chip-scale Titanium-sapphire laser that is significantly smaller and less expensive than traditional models, making it accessible for broader applications in quantum optics, neuroscience, and other fields. This new technology is expected to enable labs to have hundreds of these powerful lasers on a single chip, fueled by a simple green laser pointer.

As lasers go, those made of Titanium-sapphire (Ti: sapphire) are considered to have “unmatched” performance. They are indispensable in many fields, including cutting-edge quantum optics, spectroscopy, and neuroscience. But that performance comes at a steep price. Ti: sapphire lasers are big, on the order of cubic feet in volume. They are expensive, costing hundreds of thousands of dollars each. And they require other high-powered lasers, themselves costing $30,000 each, to supply them with enough energy to function.

Jul 3, 2024

Quantum Vortex Mystery: Unveiling the Twisted Roots of Neutron Stars’ Puzzling Pulses

Posted by in categories: quantum physics, space

A recent study has unveiled the origins of the mysterious “heartbeats” observed in neutron stars, relating them to glitches caused by the dynamics of superfluid vortices.

Researchers found that these glitches follow a power-law distribution similar to other complex systems and developed a model based on quantum vortex networks that aligns with observed data without extra tuning.

Discovering Neutron Stars’ Heartbeats

Jul 3, 2024

Quantum Breakthrough: First-Ever SPDC in Liquid Crystals Unveiled

Posted by in categories: materials, quantum physics

A groundbreaking study has demonstrated the use of liquid crystals for efficient and tunable spontaneous parametric down-conversion (SPDC), expanding the potential of quantum light sources beyond traditional solid materials.

Spontaneous parametric down-conversion (SPDC), a key method for generating entangled photons used in quantum physics and technology, has traditionally been restricted to solid materials. However, researchers at the Max Planck Institute for the Science of Light (MPL) and the Jozef Stefan Institute in Ljubljana, Slovenia, have recently achieved a breakthrough by demonstrating SPDC in a liquid crystal for the first time. Their findings, published in Nature, pave the way for the development of a new generation of quantum sources that are both efficient and tunable by electric fields.

The splitting of a single photon in two is one of the most useful tools in quantum photonics. It can create entangled photon pairs, single photons, squeezed light, and even more complicated states of light which are essential for optical quantum technologies. This process is known as spontaneous parametric down-conversion (SPDC).

Page 5 of 11,400First23456789Last