Toggle light / dark theme

Discovering new deposits of critical and rare earth minerals is paramount to delivering global net-zero ambitions. However, finding new ore bodies is becoming more challenging due to increasing costs and geopolitical tensions. What is more, much of the low-hanging fruit, so to speak, has already been exploited.

Could technological advances help broaden the search and speed up the process? Dr Bryony Richards, a senior research scientist with the Energy & Geoscience Institute at the University of Utah in the US, believes so.

Richards and her colleagues are incorporating NASA’s and Japan’s global Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery with that of new satellite data, advances in computing power and AI. With this approach, they are developing a comprehensive first-of-a-kind method to uncover the ‘fingerprints’ of mineral deposits that could eventually provide a more cost and time-effective way of mapping minerals in remote areas.


Researchers in Utah are combining satellites, hyperspectral imaging and AI to discover mineral deposits in remote locations.

A research team led by Rice University’s Yang Gao has uncovered new insights into the molecular mechanisms of ADAR1, a protein that regulates ribonucleic acid (RNA) induced immune responses. Their findings, published in Molecular Cell March 17, could open new pathways for treating autoimmune diseases and enhancing cancer immunotherapy.

ADAR1 converts adenosine to inosine in double-stranded RNA, a process essential for preventing unwarranted immune responses, yet the molecular basis of this editing had remained unclear. Through detailed biochemical profiling and structural analysis, researchers found that ADAR1’s editing activity depends on RNA sequence, duplex length and mismatches near the editing site. High-resolution structures of ADAR1 bound to RNA reveal its mechanisms for RNA binding, substrate selection and dimerization.

“Our study provides a comprehensive understanding of how ADAR1 recognizes and processes RNA,” said Gao, assistant professor of biosciences and a Cancer Prevention and Research Institute of Texas (CPRIT) Scholar. “These insights pave the way for novel therapeutic strategies targeting ADAR1-related diseases.”

Researchers have corrected a disease-causing gene mutation with a single infusion carrying a treatment that precisely targeted the errant gene.

This was the first time a mutated gene has been restored to normal.

The small study of nine patients announced Monday by the company Beam Therapeutics of Cambridge, Mass., involved fixing a spelling error involving the four base sequences — G, A, C and T — in DNA. The effect was to change an incorrect DNA letter to the right one. The result was a normal gene that functioned as it should, potentially halting liver and lung damage of patients with a rare disorder.


The small study in patients with a rare disorder that causes liver and lung damage showed the potential for precisely targeted infusions.

At GTC 2025, NVIDIA CEO Jensen Huang introduced Blue, a cutting-edge AI-powered robot developed in collaboration with Disney Research and Google DeepMind. Watch as Jensen interacts with Blue and discusses this exciting partnership. While details are scarce, this brief moment showcases NVIDIA’s vision for the future of AI and robotics.

📺 Subscribe for more tech updates!
#NVIDIA #GTC2025 #AI #DisneyResearch #WaltDisneyWorld.

Thanks For Watching!

========================================================
Follow us on:
Website: http://samsdisneydiary.com/

FACEBOOK: https://web.facebook.com/SamsDisneyDiary.

INSTAGRAM: https://www.instagram.com/SamsDisneyDaily.

=========================================================

Scientists at Berkeley Lab are unraveling the mysteries of Bennu, a 4.5-billion-year-old asteroid, using cutting-edge technology.

The asteroid harbors traces of ancient briny water, salty minerals, and even organic molecules – potential clues to life’s origins. Researchers are using X-ray and electron microscopy to analyze these space rocks at the atomic level, revealing how early planetary systems formed. Even more exciting, they’ve found amino acids.

<div class=””> <div class=””><br />Amino acids are a set of organic compounds used to build proteins. There are about 500 naturally occurring known amino acids, though only 20 appear in the genetic code. Proteins consist of one or more chains of amino acids called polypeptides. The sequence of the amino acid chain causes the polypeptide to fold into a shape that is biologically active. The amino acid sequences of proteins are encoded in the genes. Nine proteinogenic amino acids are called “essential” for humans because they cannot be produced from other compounds by the human body and so must be taken in as food.<br /></div> </div>

Experts just discovered massive pools of water that quickly paralyze and kill anything that enters them.

A team of researchers from the University of Miami has discovered deadly deep-sea brine pools in the Red Sea, uncovering a mysterious underwater world where anything that swims in does not survive.

These extreme habitats, found 1.1 miles below the surface, are so salty and oxygen-deprived that they quickly paralyze or kill marine life.

Despite their lethal nature, the outskirts of these pools support unique microbial life, offering scientists new insights into Earth’s climatic history, the origins of life, and even potential extraterrestrial ecosystems. The discovery, published in Nature Communications Earth and Environment, marks the first time such pools have been found so close to shore, making them an invaluable natural archive of past tsunamis, floods, and earthquakes.

S history, these brine pools may also lead to groundbreaking medical advancements. Similar deep-sea microorganisms have previously yielded antibacterial and anticancer compounds, hinting at the potential for new treatments hidden in these depths. Additionally, studying life in such extreme conditions could help scientists understand how organisms might survive on other planets with water-rich environments. This discovery not only expands our understanding of Earth learn more.


Deep-sea brine pools represent hypersaline environments famed for their extremophile microbes. With anoxia entirely excluding bioturbating megafauna, brine pools are also conducive to the pristine preservation of sedimentary sequences. Here we use bathymetric and geophysical observations to locate a complex of brine pools in the Gulf of Aqaba consisting of one 10,000 m2 pool and three minor pools of less than 10 m2. We further conduct sediment coring and direct sampling of the brine to confirm the sedimentary and environmental characteristics of these pools. We find that the main pool preserves a stratigraphy which spans at least 1,200 years and contains a combination of turbidites, likely resulting from flashfloods and local seismicity, and tsunamigenic terrestrial sediment. The NEOM Brine Pools, as we name them, extend the known geographical range of Red Sea brine pools, and represent a unique preservational environment for the sedimentary signals of regional climatic and tectonic events.

How does the armored tiling on shark and ray cartilage maintain a continuous covering as the animals’ skeletons expand during growth?

This is a question that has perplexed Professor Mason Dean, a in the Department of Infectious Diseases and Public Health at City University of Hong Kong (CityUHK) since he was in graduate school.

An expert in , structure and function in vertebrate animals, but with a particular focus on (and affection for) sharks and rays, Professor Dean says he was curious about how nature keeps complex surfaces covered while organs and animals are growing, and their surfaces are changing.

Researchers have characterized the temperature-induced frequency shifts of a thorium-229 nuclear transition—an important step in establishing thorium clocks as next-generation frequency standards.

Atomic clocks are at the core of many scientific and technological applications, including spectroscopy, radioastronomy, and global navigation satellite systems. Today’s most precise devices—based on electronic transitions in atoms—would gain or lose less than 1 second over the age of the Universe. An even more accurate timekeeping approach has recently emerged, based on a clock ticking at the frequency of a nuclear transition of the isotope thorium-229 (229 Th) [1, 2]. Now a collaboration between the teams of Jun Ye of JILA, the National Institute of Standards and Technology, and the University of Colorado Boulder and of Thorsten Schumm of the Vienna Center for Quantum Science and Technology has characterized one of the main sources of the systematic uncertainties that might spoil a clock’s accuracy: temperature-induced shifts of the clock transition frequency [3].