Menu

Blog

Archive for the ‘quantum physics’ category: Page 8

Sep 11, 2024

New classical algorithm enhances understanding of quantum computing’s future

Posted by in categories: computing, engineering, information science, particle physics, quantum physics

In an exciting development for quantum computing, researchers from the University of Chicago’s Department of Computer Science, Pritzker School of Molecular Engineering, and Argonne National Laboratory have introduced a classical algorithm that simulates Gaussian boson sampling (GBS) experiments.

Sep 11, 2024

Unique nanodisk pushes photonics research forward

Posted by in categories: biotech/medical, quantum physics

Photonic applications harness the power of light-matter interactions to generate various intriguing phenomena. This has enabled major advances in communications, medicine, and spectroscopy, among others, and is also used in laser and quantum technologies.

Sep 11, 2024

Scientists demonstrate first experimental evidence of non-Hermitian edge burst in photonic quantum walks

Posted by in category: quantum physics

In a new Physical Review Letters study, scientists have demonstrated the first experimental observation of non-Hermitian edge burst in quantum dynamics using a carefully designed photonic quantum walk setup.

Sep 11, 2024

X-rays from atomic systems could reveal new clues about rival quantum theories

Posted by in category: quantum physics

The apparent weirdness of the quantum world is often exemplified by the paradox of Schrödinger’s imaginary cat that exists in a limbo state of being both alive and dead until looked upon by an observer. But in the real world we never encounter such zombie felines.

Sep 11, 2024

Fluctuating hydrodynamics theory could describe chaotic many-body systems, study suggests

Posted by in categories: particle physics, quantum physics

Although systems consisting of many interacting small particles can be highly complex and chaotic, some can nonetheless be described using simple theories. Does this also pertain to the world of quantum physics?

Sep 11, 2024

Quantum error correction technology outperforms world’s leading quantum computing company, researchers claim

Posted by in categories: computing, quantum physics

Solving the problem of error is essential for the practical application of quantum computing technologies that surpass the performance of digital computers. Information input into a qubit, the smallest unit of quantum computation, is quickly lost and error-prone.

Sep 10, 2024

Microsoft-led Team Achieves Record for Reliable Logical Qubits in Quantum Computing

Posted by in categories: computing, quantum physics

According to Zander, the company’s recent work builds on a blockbuster advance that Microsoft and Quantinuum announced in the spring.

Zander writes: “In April, we announced that we’re entering the next phase for solving meaningful problems with reliable quantum computers by demonstrating the most reliable logical qubits with an error rate 800x better than physical qubits.” He adds, “In less than six months, our improved qubit-virtualization system tripled reliable logical qubit counts.”

The advance goes to the heart of a primary challenge in quantum computing today: the unreliability of physical qubits, which are prone to errors due to their highly sensitive nature. Microsoft addressed this issue by creating logical qubits, which are collections of physical qubits working together to correct errors and maintain coherence.

Sep 9, 2024

Atoms on the edge

Posted by in categories: particle physics, quantum physics

Typically, electrons are free agents that can move through most metals in any direction. When they encounter an obstacle, the charged particles experience friction and scatter randomly like colliding billiard balls.

But in certain exotic materials, electrons can appear to flow with single-minded purpose. In these materials, electrons may become locked to the material’s edge and flow in one direction, like ants marching single-file along a blanket’s boundary. In this rare “edge state,” electrons can flow without friction, gliding effortlessly around obstacles as they stick to their perimeter-focused flow. Unlike in a superconductor, where all electrons in a material flow without resistance, the current carried by edge modes occurs only at a material’s boundary.

Now MIT physicists have directly observed edge states in a cloud of ultracold atoms. For the first time, the team has captured images of atoms flowing along a boundary without resistance, even as obstacles are placed in their path. The results, which appear in Nature Physics (“Observation of chiral edge transport in a rapidly rotating quantum gas”), could help physicists manipulate electrons to flow without friction in materials that could enable super-efficient, lossless transmission of energy and data.

Sep 9, 2024

A New Theory of Everything Just Dropped!

Posted by in categories: open access, quantum physics

Learn maths and science on Brilliant! If you use my link, the first 30 days are free, plus you get 20% off the annual premium subscription ➜ https://brilliant.org/sabine.

I got a bunch of requests to comment on a new attempt at a theory of everything that supposedly combines quantum physics with general relativity. I had a look, and this is a quick comment. First reaction, basically. Didn’t get far in the paper, as you will see. I am sorry in case I appear unkind, but this kind of stuff really pisses me off.

Continue reading “A New Theory of Everything Just Dropped!” »

Sep 9, 2024

Detecting single gravitons with quantum sensing

Posted by in categories: energy, quantum physics

While it has been suggested that low-energy experiments might allow to find evidence for quantization of gravity, direct detection of single gravitons has normally been considered a hopeless task. Here, the authors suggest that a massive body cooled to the ground state in a gravitational wave background should display detectable stimulated single gravitonions.

Page 8 of 808First56789101112Last