Toggle light / dark theme

If Quantum Computing Is Solving “Impossible” Questions, How Do We Know They’re Right?

A new Swinburne study is addressing a core paradox: if quantum computing is solving problems that cannot be checked by conventional methods, how can we be certain the results are correct? Quantum computing has the potential to tackle problems once thought unsolvable in areas including physics, me

Quantum Breakthrough Unlocks Potential of “Miracle Material” for Future Electronics

Graphene is a remarkable “miracle” material, consisting of a single, atom-thin layer of tightly connected carbon atoms that remains both stable and highly conductive. These qualities make it valuable for many technologies, including flexible screens, sensitive detectors, high-performance batteries, and advanced solar cells.

A new study, carried out by the University of Göttingen in collaboration with teams in Braunschweig and Bremen in Germany, as well as Fribourg in Switzerland, shows that graphene may be even more versatile than previously believed.

For the first time, researchers have directly identified “Floquet effects” in graphene. This finding settles a long-running question: Floquet engineering – an approach that uses precise light pulses to adjust a material’s properties – can also be applied to metallic and semi-metallic quantum materials like graphene. The work appears in Nature Physics.

Widely tunable and narrow-linewidth violet lasers enabled by UV-transparent materials

Integrating UV lasers is of interest for portable optical clocks and ion-based quantum computers, but material absorption has impeded progress. Here, authors demonstrate a violet integrated laser using UV-transparent materials with mW-level output, narrow linewidth and precise frequency control.

The Physicist Who Says Reality Is Not What It Seems

Quantum physicist Vlatko Vedral proposes a radical vision of reality, one in which observers don’t exist, there are no particles and there is no space or time. Instead, for Vedral, quantum numbers, also known as Q numbers, are the true essence of reality, and it’s a much more beautiful and useful way to understand the world.


Learn more ➤ https://www.newscientist.com/article/.… ➤ https://bit.ly/NSYTSUBS Get more from New Scientist: Official website: https://bit.ly/NSYTHP Facebook: https://bit.ly/NSYTFB Twitter: https://bit.ly/NSYTTW Instagram: https://bit.ly/NSYTINSTA LinkedIn: https://bit.ly/NSYTLIN About New Scientist: New Scientist was founded in 1956 for “all those interested in scientific discovery and its social consequences”. Today our website, videos, newsletters, app, podcast and print magazine cover the world’s most important, exciting and entertaining science news as well as asking the big-picture questions about life, the universe, and what it means to be human. New Scientist https://www.newscientist.com/

Subscribe ➤ https://bit.ly/NSYTSUBS

Get more from New Scientist:
Official website: https://bit.ly/NSYTHP
Facebook: https://bit.ly/NSYTFB
Twitter: https://bit.ly/NSYTTW
Instagram: https://bit.ly/NSYTINSTA
LinkedIn: https://bit.ly/NSYTLIN

About New Scientist:
New Scientist was founded in 1956 for “all those interested in scientific discovery and its social consequences”. Today our website, videos, newsletters, app, podcast and print magazine cover the world’s most important, exciting and entertaining science news as well as asking the big-picture questions about life, the universe, and what it means to be human.

New Scientist.

New scalable single-spin qubits could simplify future processors

Quantum computers, which operate leveraging effects rooted in quantum mechanics, have the potential of tackling some computational and optimization tasks that cannot be solved by classical computers. Instead of bits (i.e., binary digits), which are the basic units of information in classical computers, quantum computers rely on so-called qubits.

Qubits, the quantum equivalent of bits, are not restricted to binary states (i.e., 0 or 1), but can exist in superpositions of these states. One common type of qubits used to fabricate quantum processors are so-called semiconductor .

Quantum dots are small electrically confined regions that can trap individual charge carriers. To manipulate these qubits, most quantum engineers currently rely on high-frequency , as opposed to low-frequency baseband signals.

Bright squeezed vacuum reveals hidden quantum effects in strong-field physics

In a new study published in Nature Physics, researchers have demonstrated that quantum light, particularly bright squeezed vacuum (BSV), can drive strong-field photoemission at metal needle tips.

Attosecond science—the study of electron behavior on timescales of 10⁻¹⁸ seconds—has traditionally relied on intense laser pulses that correspond to “coherent states” of light. They function as classical electromagnetic waves with predictable, oscillating electric fields that push electrons to high energies.

When electrons rescatter from surfaces under this intense illumination, they produce characteristic signatures: a plateau in their energy spectrum followed by a sharp cut-off. These features have become central to probing matter with attosecond precision.

Scientists Reveal a Theory Suggesting Another Reality Has Been Overlapping Ours

If you think about it, physics has always advanced because of strange little clues that didn’t seem to fit. Mercury’s orbit was off by a tiny fraction; that small mismatch eventually gave us Einstein’s theory of relativity.

The ultraviolet catastrophe in blackbody radiation didn’t make sense because the crisis opened the door to quantum mechanics. So whenever something doesn’t quite add up, it’s worth paying attention. Extra dimensions enter the story because of exactly this kind of mismatch.

If extra dimensions are real, then the forces of nature might not be as separate as they look. Gravity might only appear weak because it’s spread across hidden dimensions, while the other forces are stuck to the space we can see. That would mean unification: the dream of combining all forces under one theory isn’t just possible, but natural.

Thank you for watching.

▀▀▀▀▀▀
Timestamps.

0:00 Extra Dimensions.

Study maps the time and energy patterns of electron pairs in ultrafast pulses

The ability to precisely study and manipulate electrons in electron microscopes could open new possibilities for the development of both ultrafast imaging techniques and quantum technologies.

Over the past few years, physicists have developed new experimental tools for studying the behavior of electrons not bounded to any material by utilizing the so-called nanoscale field emitters, tiny metallic tips that release electrons when exposed to strong electric fields.

Researchers at the Max Planck Institute for Multidisciplinary Sciences recently carried out a study aimed at shedding new light on how pairs of emitted electrons relate to each other and how their behavior unfolds over time.

When superfluids collide, physicists find a mix of old and new behavior

Physics is often about recognizing patterns, sometimes repeated across vastly different scales. For instance, moons orbit planets in the same way planets orbit stars, which in turn orbit the center of a galaxy.

When researchers first studied the structure of atoms, they were tempted to extend this pattern down to smaller scales and describe electrons as orbiting the nuclei of atoms. This is true to an extent, but the quirks of quantum physics mean that the pattern breaks in significant ways. An electron remains in a defined orbital area around the nucleus, but unlike a classical orbit, an electron will be found at a random location in the area instead of proceeding along a precisely predictable path.

That electron orbits bear any similarity to the orbits of moons or planets is because all of these orbital systems feature attractive forces that pull the objects together. But a discrepancy arises for electrons because of their .

/* */