Toggle light / dark theme

Deep ultraviolet (DUV) lasers, known for their high photon energy and short wavelengths, are essential in various fields such as semiconductor lithography, high-resolution spectroscopy, precision material processing, and quantum technology. These lasers offer increased coherence and reduced power consumption compared to excimer or gas discharge lasers, enabling the development of more compact systems.

As reported in Advanced Photonics Nexus, researchers from the Chinese Academy of Sciences have made a significant advancement by developing a compact, solid-state laser system capable of generating 193-nm coherent light.

This wavelength is crucial for photolithography, a process used to etch intricate patterns onto , forming the backbone of modern electronic devices.

For the first time, scientists have directly measured the cross-section of a weak r-process nuclear reaction using a radioactive ion beam. Specifically, the team studied the reaction 94Sr(α, n)97Zr, where a radioactive isotope of strontium (strontium-94) absorbs an alpha particle (a helium nucleus), emits a neutron, and becomes zirconium-97.

The findings have been published as an Editors’ Suggestion in Physical Review Letters

<em> Physical Review Letters (PRL)</em> is a prestigious peer-reviewed scientific journal published by the American Physical Society. Launched in 1958, it is renowned for its swift publication of short reports on significant fundamental research in all fields of physics. PRL serves as a venue for researchers to quickly share groundbreaking and innovative findings that can potentially shift or enhance understanding in areas such as particle physics, quantum mechanics, relativity, and condensed matter physics. The journal is highly regarded in the scientific community for its rigorous peer review process and its focus on high-impact papers that often provide foundational insights within the field of physics.

Quantum technologies operate by leveraging various quantum mechanical effects, including entanglement. Entanglement occurs when two or more particles share correlated states even if they are distant.

When two particles are spin entangled, the (i.e., spin) of one particle can influence that of its entangled partner. This would suggest that the energy of the second particle can be altered via a nonlocal correlation, without enabling faster-than-light communication.

Researchers at Shanghai Jiao Tong University and Hefei National Laboratory recently carried out a study aimed at testing this theoretical prediction experimentally using two .

A research team led by Professor Sun Qing-Feng in collaboration with Professor He Lin’s research group from Beijing Normal University has achieved orbital hybridization in graphene-based artificial atoms for the first time.

Their study, titled “Orbital hybridization in graphene-based artificial atoms” has been published in Nature. The work marks a significant milestone in the field of quantum physics and , bridging the gap between artificial and real atomic behaviors.

Quantum dots, often called artificial atoms, can mimic but have not yet been used to simulate orbital hybridization, a crucial process in real atoms. While quantum dots have successfully demonstrated artificial bonding and antibonding states, their ability to replicate orbital hybridization remained unexplored.

A new type of time crystal could represent a breakthrough in quantum physics.

In a diamond zapped with lasers, physicists have created what they believe to be the first true example of a time quasicrystal – one in which patterns in time are structured, but do not repeat. It’s a fine distinction, but one that could help evolve quantum research and technology.

“They could store quantum memory over long periods of time, essentially like a quantum analog of RAM,” says physicist Chong Zu of Washington University in the US. “We’re a long way from that sort of technology. But creating a time quasicrystal is a crucial first step.”