An Irish startup has created the world’s first silicon-based quantum computer — it can still integrate seamlessly with classical computing in data centers.
Category: quantum physics – Page 17
PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE
Sign Up on Patreon to get access to the Space Time Discord!
/ pbsspacetime.
It’s hard to interpret the strange results of quantum mechanics, though many have tried. Interpretations range from the outlandish—like the multiple universes of Many Worlds, to the almost mundane, like the very mechanical Pilot Wave Theory. But perhaps we’re converging on an answer, because some are arguing that these two interpretations are really the same thing.
Check out the Space Time Merch Store.
https://www.pbsspacetime.com/shop.
Sign up for the mailing list to get episode notifications and hear special announcements!
https://mailchi.mp/1a6eb8f2717d/space… the Entire Space Time Library Here: https://search.pbsspacetime.com/ Hosted by Matt O’Dowd Written by Taha Dawoodbhoy & Matt O’Dowd Post Production by Leonardo Scholzer, Yago Ballarini & Stephanie Faria Directed by Andrew Kornhaber Associate Producer: Bahar Gholipour Executive Producers: Eric Brown & Andrew Kornhaber Executive in Charge for PBS: Maribel Lopez Director of Programming for PBS: Gabrielle Ewing Assistant Director of Programming for PBS: John Campbell Spacetime is produced by Kornhaber Brown for PBS Digital Studios. This program is produced by Kornhaber Brown, which is solely responsible for its content. © 2023 PBS. All rights reserved. End Credits Music by J.R.S. Schattenberg: / multidroideka Space Time Was Made Possible In Part By: Big Bang Sponsors Bryce Fort Peter Barrett David Neumann Sean Maddox Alexander Tamas Morgan Hough Juan Benet Vinnie Falco Fabrice Eap Mark Rosenthal Quasar Sponsors Glenn Sugden Alex Kern Ethan Cohen Stephen Wilcox Mark Heising Hypernova Sponsors Stephen Spidle Chris Webb Ivari Tölp Zachry Wilson Kenneth See Gregory Forfa drollere Bradley Voorhees Scott Gorlick Paul Stehr-Green Ben Delo Scott Gray Антон Кочков Robert Ilardi John R. Slavik Donal Botkin Edmund Fokschaner chuck zegar Jordan Young Daniel Muzquiz Gamma Ray Burst Sponsors Lori Ferris James Sadler Dennis Van Hoof Koen Wilde Nicolas Katsantonis Piotr Sarnicki Massimiliano Pala Thomas Nielson Joe Pavlovic Ryan McGaughy Justin Lloyd Chuck Lukaszewski Cole B Combs Andrea Galvagni Jerry Thomas Nikhil Sharma Ryan Moser John Anderson David Giltinan Scott Hannum Bradley Ulis Craig Falls Kane Holbrook Ross Story teng guo Mason Dillon Matt Langford Harsh Khandhadia Thomas Tarler Susan Albee Frank Walker Matt Quinn Michael Lev Terje Vold James Trimmier Jeremy Soller Paul Wood Joe Moreira Kent Durham Ramon Nogueira Ellis Hall John H. Austin, Jr. Diana S Poljar Faraz Khan Almog Cohen Daniel Jennings Russ Creech Jeremy Reed David Johnston Michael Barton Isaac Suttell Oliver Flanagan Bleys Goodson Mark Delagasse Mark Daniel Cohen Shane Calimlim Eric Kiebler Craig Stonaha Frederic Simon John Robinson Jim Hudson Alex Gan David Barnholdt David Neal John Funai Bradley Jenkins Vlad Shipulin Cody Brumfield Thomas Dougherty King Zeckendorff Dan Warren Joseph Salomone Patrick Sutton Dean Faulk.
Search the Entire Space Time Library Here: https://search.pbsspacetime.com/
The ability to teleport between two supercomputers is a leap for humanity. It is achieved between quantum computers in a world first with major implications.
The Quantum Insider (TQI) is the leading online resource dedicated exclusively to Quantum Computing.
Physicists are trying to ditch the concept of space-time – the supposed fabric of physical reality. Quantum columnist Karmela Padavic-Callaghan explains why.
To create useful randomness in a quantum computer, you could add more quantum bits, but using quantum chaos does the trick too
The mathematics of graphs has helped reveal a principle that limits the strength of quantum correlations – and explains why physicists have never measured any stronger connections in some post-quantum realm
Quantum technologies, which leverage quantum mechanical effects to process information, could outperform their classical counterparts in some complex and advanced tasks. The development and real-world deployment of these technologies partly relies on the ability to transfer information between different types of quantum systems effectively.
A long-standing challenge in the field of quantum technology is converting quantum signals carried by microwave photons (i.e., particles of electromagnetic radiation in the microwave frequency range) into optical photons (i.e., visible or near visible light particles). Devices designed to perform this conversion are known as microwave-to-optical transducers.
Researchers at the California Institute of Technology recently developed a new microwave-to-optical transducer based on rare-earth ion-doped crystals. Their on-chip transducer, outlined in a paper published in Nature Physics, was implemented using ytterbium-171 ions doped in a YVO4 crystal.
Exactly 100 years ago, famed Austrian physicist Erwin Schrödinger (yes, the cat guy) postulated his eponymous equation that explains how particles in quantum physics behave. A key component of quantum mechanics, Schrödinger’s Equation provides a way to calculate the wave function of a system and how it changes dynamically in time.
“Quantum mechanics, along with Albert Einstein’s theory of general relativity are the two pillars of modern physics,” says Utah State University physicist Abhay Katyal. “The challenge is, for more than half a century, scientists have struggled to reconcile these two theories.”
Quantum mechanics, says Katyal, a doctoral student and Howard L. Blood Graduate Fellow in the Department of Physics, describes the behavior of matter and forces at the subatomic level, while general relativity explains gravity on a large scale.
Future space missions could use quantum technologies to help us understand the physical laws that govern the universe, explore the composition of other planets and their moons, gain insights into unexplained cosmological phenomena, or monitor ice sheet thickness and the amount of water in underground aquifers on Earth.
NASA’s Cold Atom Lab (CAL), a first-of-its-kind facility aboard the International Space Station, has performed a series of trailblazing experiments based on the quantum properties of ultracold atoms. The tool used to perform these experiments is called an atom interferometer, and it can precisely measure gravity, magnetic fields, and other forces.
Atom interferometers are currently being used on Earth to study the fundamental nature of gravity and are also being developed to aid aircraft and ship navigation, but use of an atom interferometer in space will enable innovative science capabilities.