A new quantum state has been discovered—where electrons flow in strange patterns and matter defies the rules.

“How quantum mechanics and gravity fit together is one of the most important outstanding problems in physics,” says Kathryn Zurek, a theoretical physicist at the California Institute of Technology (Caltech) in Pasadena.
Generations of researchers have tried to create a quantum theory of gravity, and their work has produced sophisticated mathematical constructs, such as string theory. But experimental physicists haven’t found concrete evidence for any of these, and they’re not even sure what such evidence could look like.
Now there is a sense that insights could be around the corner. In the past decade, many researchers have become more optimistic that there are ways to test the true nature of gravity in the laboratory. Scientists have proposed experiments to do this, and are pushing the precision of techniques to make them possible. “There’s been a huge rise in both experimental capability and our theoretical understanding of what we actually learn from such experiments,” says Markus Aspelmeyer, an experimental physicist at the University of Vienna and a pioneer of this work.
Graphene is a two-dimensional material composed of a single layer of carbon atoms arranged in a hexagonal lattice. Its first discovery was so astonishing because, despite its atomic-scale thickness, graphene exhibits exceptional mechanical strength, approximately 200 times greater than steel.
It also has high electrical and thermal conductivity and a very high theoretical surface area of approximately 2,630 m2/g, which means it can easily be functionalized, broadening its scope.
These properties make graphene suitable for applications in quantum electronics, biomedicine, sustainable construction, and energy storage.
Graphene’s role in technology is expanding, offering solutions for energy storage, cancer therapy, and sustainable construction through innovative research.
Which leads us to a strange but necessary question:
If the universe is just structure — just syntax — then where’s the meaning?
Because that’s what we’ve been trying to find all along, isn’t it? Not just patterns. Not just formulas. But something is behind it. Something in it. A message. A cause. A reason why anything is the way it is. Something we could point to and say, “There — that’s what it’s all about.”
3:04 The Illusion of Physical Reality — Is Anything Really There?
10:16 Quantum Mechanics — When Reality Stops Making Sense.
18:04 The Holographic Principle — A Universe Made of Information.
26:24 Quantum Fields, Not Particles — The Fabric Beneath Matter.
33:29 Emergence — Time, Space, and Matter Are Not Fundamental.
41:49 Simulation Theory — But with a Physics Twist.
49:12 Quantum Gravity and the End of Local Reality.
57:29 Consciousness and the Collapse of Reality.
1:06:11 The “It from Bit” Hypothesis.
1:15:37 Experimental Clues — When the Universe Disobeys Logic.
1:23:46 If the Universe Isn’t Real, What Are We?
1:33:13 Could Physics Be Telling Us There’s No ‘There’ There?
1:39:33 Is the Universe a Language Without a Speaker?
1:46:53 So… What’s Left? Do We Actually Exist?
1:52:07 The Ultimate Twist — Could “Nothing” Be the Most Real Thing?
1:57:07 What If the Universe Is the Biggest Illusion Ever Constructed?
If you keep peeling everything back, does anything actually remain?
That’s the uncomfortable part. Because there’s a difference between saying “nothing exists the way we thought” and saying “nothing exists at all.” The first is about interpretation. The second is about presence. One reframes reality. The other questions whether there’s anything there to reframe.
MIT physicists confirm that, like Superman, light has two identities that are impossible to see at once. Physicists at MIT recreated the double-slit experiment using individual photons and atoms held in laser light, uncovering the true limits of light’s wave–particle duality. Their results proved Einstein’s proposal wrong and confirmed a core prediction of quantum mechanics.
MIT physicists have performed an idealized version of one of the most famous experiments in quantum physics. Their findings demonstrate, with atomic-level precision, the dual yet evasive nature of light. They also happen to confirm that Albert Einstein was wrong about this particular quantum scenario.
The experiment in question is the double-slit experiment, which was first performed in 1801 by the British scholar Thomas Young to show how light behaves as a wave. Today, with the formulation of quantum mechanics, the double-slit experiment is now known for its surprisingly simple demonstration of a head-scratching reality: that light exists as both a particle and a wave. Stranger still, this duality cannot be simultaneously observed. Seeing light in the form of particles instantly obscures its wave-like nature, and vice versa.
In nanoscale transistors, quantum mechanical effects such as tunneling and quantization significantly influence device characteristics. However, large-scale quantum transport simulation remains a challenging field, making it difficult to account for quantum mechanical effects arising from the complex device geometries. Here, based on large-scale quantum transport simulations, we demonstrate that quantum geometrical effects in stacked nanosheet GAAFETs significantly impact carrier injection characteristics. Discontinuities in confinement energy at the constriction—the junction between the bulk source/drain and nanosheet channel—cause substantial carrier backscattering. This degradation becomes more severe as electrons experience higher effective energy barriers, and is further exacerbated at lower scattering rate, lower doping concentrations, and near Schottky barriers where electron depletion regions form. Considering these quantum mechanical bottlenecks, proper device optimization for future technology nodes requires a full quantum-based device structure design at the large-scale level, which enables unique optimization strategies beyond conventional classical prediction.
Kyoung Yeon Kim and colleagues report the importance of quantum geometrical effects that serve as a bottleneck in stacked nanosheet GAAFETs. This highlights that full quantum mechanics-based device design is crucial for realizing ideal carrier injection characteristics in future technology nodes.
Some phases of matter cannot be described using the conventional framework of symmetry breaking and exhibit a so-called quantum order. One type of quantum order, known as topological order, is characterized by long-range entanglement between particles across an entire system, a ground state degeneracy that depends on the global shape of the system, and a robustness against local disturbances.
Topological phases of matter primarily occur at zero temperature, as thermal fluctuations tend to destroy them and disrupt their underlying order. In a recent paper published in Physical Review Letters, however, researchers at Nanjing University, Yale University and other institutes reported a new 3D topological phase of matter characterized by an anomalous two-form symmetry that occurs at non-zero temperatures.
“In the last several years, we have made substantial progress in our ability to control quantum systems —over a range of different platforms: superconducting qubits, trapped ions, neutral atoms, photonics, and so on,” Tyler D. Ellison, senior author of the paper, told Phys.org.
Medical imaging methods such as ultrasound and MRI are often affected by background noise, which can introduce blurring and obscure fine anatomical details in the images. For clinicians who depend on medical images, background noise is a fundamental problem in making accurate diagnoses.
Methods for denoising have been developed with some success, but they struggle with the complexity of noise patterns in medical images and require manual tuning of parameters, adding complexity to the denoising process.
To solve the denoising problem, some researchers have drawn inspiration from quantum mechanics, which describes how matter and energy behave at the atomic scale. Their studies draw an analogy between how particles vibrate and how pixel intensity spreads out in images and causes noise. Until now, none of these attempts directly applied the full-scale mathematics of quantum mechanics to image denoising.