Toggle light / dark theme

The universe is decaying much faster than thought. This is shown by calculations of three Dutch scientists on the so-called Hawking radiation. They calculate that the last stellar remnants take about 1078 years to perish. That is much shorter than the previously postulated 101100 years.

The researchers have published their findings in the Journal of Cosmology and Astroparticle Physics.

The research by black hole expert Heino Falcke, quantum physicist Michael Wondrak, and mathematician Walter van Suijlekom (all from Radboud University, Nijmegen, the Netherlands) is a follow-up to a 2023 paper by the same trio.

New theoretical research by Michael Wondrak, Walter van Suijlekom and Heino Falcke of Radboud University has shown that Stephen Hawking was right about black holes, although not completely. Due to Hawking radiation, black holes will eventually evaporate, but the event horizon is not as crucial as had been believed. Gravity and the curvature of spacetime cause this radiation too. This means that all large objects in the universe, like the remnants of stars, will eventually evaporate.

Using a clever combination of quantum physics and Einstein’s theory of gravity, Stephen Hawking argued that the spontaneous creation and annihilation of pairs of particles must occur near the (the point beyond which there is no escape from the gravitational force of a black hole).

A particle and its anti-particle are created very briefly from the quantum field, after which they immediately annihilate. But sometimes a particle falls into the black hole, and then the other particle can escape: Hawking radiation. According to Hawking, this would eventually result in the evaporation of .

Axions, hypothetical subatomic particles that were first proposed by theoretical physicists in the late 1970s, remain among the most promising dark matter candidates. Physics theories suggest that the interactions between these particles and regular matter are extremely weak, which makes them very difficult to detect using conventional experimental set-ups.

The HAYSTAC (Haloscope at Yale Sensitive to Axion Cold Dark Matter) experiment is a research collaboration between Yale, Berkeley and Johns Hopkins, aimed at detecting axions by searching for the small electromagnetic signals that they could produce within a strong magnetic field.

In a recent paper published in Physical Review Letters, the HAYSTAC collaboration has reported the results of the broadest search for axions performed to date, utilizing a technique known as quantum squeezing, which is designed to reduce quantum noise (i.e., random fluctuations that adversely affect their haloscope’s measurements).

Two recent advances—one in nanoscale chemistry and another in astrophysics—are making waves. Scientists studying the movement of molecules in porous materials and researchers observing rare cosmic events have uncovered mechanisms that could reshape both industry and our view of the universe.

One of the most promising fields in material science centers on molecular diffusion. This is the way molecules move through small, confining spaces—a key process behind technologies like gas separation, catalysis, and energy storage. Materials called MOFs, short for metal-organic frameworks, have emerged as powerful tools because of their flexible structure and tunable chemistry.

Yet predicting how molecules behave inside these frameworks isn’t simple. Pore size, shape, chemical reactivity, and even how the material flexes all play a role. Studying these factors one by one has been manageable. But understanding how they work together to control molecular flow remains a major hurdle for material designers.

Growing evidence suggests that subatomic phenomena can shape fundamental activities in cells, including how organisms handle energy at the smallest scales. Quantum biology, as it’s being called, is no longer just a fringe idea among researchers.

On May 5, 2025, scientists at The Hebrew University of Jerusalem announced a study linking quantum mechanics with key cellular functions in protein-based systems.

A new kind of song has just been released—and it wasn’t composed the usual way. Powered by an unusual mix of quantum science and AI, this track defies the rules of music creation.

A way to greatly enhance the efficiency of a method for correcting errors in quantum computers has been realized by theoretical physicists at RIKEN. This advance could help to develop larger, more reliable quantum computers based on light.

Quantum computers are looming large on the horizon, promising to revolutionize computing within the next decade or so.

“Quantum computers have the potential to solve problems beyond the capabilities of today’s most powerful supercomputers,” notes Franco Nori of the RIKEN Center for Quantum Computing (RQC).

In this profound and thought-provoking clip from the Quantum Convergence documentary, tech pioneer and physicist Federico Faggin delves into his transformative experience of consciousness — the moment he felt himself as the universe observing itself. Faggin, best known for his work in developing the first microprocessor, explores the fundamental nature of consciousness, its relationship with matter, and the deeper purpose of the universe.

🌐 About Quantum Convergence:
Quantum Convergence is a groundbreaking documentary that explores the intersection of science, technology, and consciousness. Featuring leading thinkers and visionaries, the film examines how our understanding of reality is evolving in the age of AI and quantum physics.

🔔 Subscribe for more transformative content:
📍 Stay updated with more clips and insights from Quantum Convergence by hitting the notification bell.
👍 Like, share, and comment if you believe in the power of consciousness.

#QuantumConvergence #Consciousness #FedericoFaggin #AI #Philosophy #Science #QuantumPhysics.

Learn more — https://www.infinitepotential.com/