Toggle light / dark theme

Physicists Unveil New Quantum Super Material That Could Revolutionize Electronics

A new quantum material developed at Rice University combines unique symmetry-driven properties with superconductivity. A team of physicists from Rice University, led by Ming Yi and Emilia Morosan, has created a groundbreaking new material that could power the next generation of electronics. This

One theory beyond the standard model could allow wormholes that you could actually fly through

Wormholes are a popular feature in science fiction, the means through which spacecraft can achieve faster-than-light (FTL) travel and instantaneously move from one point in spacetime to another. And while the General Theory of Relativity forbids the existence of “traversable wormholes,” recent research has shown that they are actually possible within the domain of quantum physics.

Towards topological quantum batteries: Theoretical framework addresses two long-standing challenges

Researchers from the RIKEN Center for Quantum Computing and Huazhong University of Science and Technology have conducted a theoretical analysis demonstrating how a “topological quantum battery”—an innovative device that leverages the topological properties of photonic waveguides and quantum effects of two-level atoms—could be efficiently designed. The work, published in Physical Review Letters, holds promise for applications in nanoscale energy storage, optical quantum communication, and distributed quantum computing.

With increasing global awareness of the importance of environmental sustainability, developing next-generation storage devices has become a critical priority. Quantum batteries—hypothetical miniature devices that, unlike classical batteries that store energy via chemical reactions, rely on quantum properties such as superposition, entanglement, and coherence—have the potential to enhance the storage and transfer of energy.

From a mechanistic perspective, they offer potential performance advantages over classical batteries, including improved charging power, increased capacity, and superior work extraction efficiency.

Puzzling Material Reveals Quantum Twist: Scientists Have Uncovered the True Nature of Bismuth

Bismuth, a puzzling material in quantum research, has now revealed a surprising twist. Kobe University scientists discovered that its surface properties can obscure its true nature, challenging a foundational assumption in topological material science. For nearly two decades, scientists have puzz

MRI method maps blood flows in reverse for deeper insight into brain physiology

The venous system maintains the health of our brains by removing deoxygenated blood and other waste products, but its complexity and variability have made scientific study difficult. Now, a UC Berkeley-led team of researchers has developed an innovative MRI technique that may expand our understanding of this critical system.

In a study published in Nature Communications, the researchers demonstrate how their new imaging method, Displacement Spectrum (DiSpect) MRI, maps blood flows “in reverse” to reveal the source of blood in the ’s veins. This approach could help answer long-standing questions about brain physiology as well as provide a safer, more efficient way to diagnose disease.

Like some current MRI methods, DiSpect uses the water in our blood as a tracing agent to map perfusion, or blood flow, in the brain. The water’s hydrogen atoms possess a quantum mechanical property called spin and can be magnetized when exposed to a magnetic field, like an MRI scanner. But what makes DiSpect unique is its ability to track the “memory” of these nuclear spins, allowing it to map blood flow back to its source.

Superposition In Quantum Computing: How Does This Quantum Mechanical Principle Work?

Quantum computing, a field of scientific exploration, is based on the quantum mechanical principle of superposition, which allows particles to exist in multiple states simultaneously. This principle, along with entanglement, a quantum phenomenon that enables particles to be instantaneously connected, provides quantum computers with computational power beyond the reach of classical computers. The development of quantum computing, rooted in the early 20th century, is a testament to intellectual daring, as scientists grappled with concepts that defied logic but were supported by experimental evidence.