Menu

Blog

Archive for the ‘quantum physics’ category: Page 19

Jul 13, 2024

New quantum computer smashes ‘quantum supremacy’ record by a factor of 100 — and it consumes 30,000 times less power

Posted by in categories: computing, quantum physics

The 56-qubit H2-1 computer has broken the previous record in the ‘quantum supremacy’ benchmark first set by Google in 2019.

Jul 13, 2024

Oxford Ionics Reports Chips Break Global Quantum Performance Records

Posted by in categories: computing, quantum physics

Oxford Ionics reported that the company’s newest chips can provide over twice the performance of previous records.

Jul 12, 2024

Artificial intelligence could help make quantum computers a reality

Posted by in categories: quantum physics, robotics/AI

CSIRO research, published as a letter in Physical Review Research journal, found for the first time that AI could help process and resolve quantum errors known as qubit noise, which are generated by the nature of quantum physics.

Overcoming these errors is widely considered the largest barrier to advanced quantum computers moving from experiment to tool.

In conventional computers, information is stored and processed in “bits,” which work on the principles of binary numbers. Each bit can represent either 0 or 1. But quantum computing devices are made up of quantum bits, or “qubits.”

Jul 12, 2024

Securely propagating entanglement at the push of a button

Posted by in categories: computing, quantum physics

Entanglement, Einstein’s “spooky action at a distance,” today is THE tool of quantum information science. It is the essential resource for quantum computers and used to transmit quantum information in a future quantum network. But it is highly sensitive. It is therefore an enormous challenge to entangle resting quantum bits (qubits) with flying qubits in the form of photons “at the push of a button.”

Jul 12, 2024

What flavor is that neutrino? Adding flavor helps to track neutrino movement in astrophysical systems

Posted by in categories: particle physics, quantum physics, space

Neutrinos have a quantum mechanical property called “flavor.” This flavor can transform as neutrinos move through space. A major challenge is to keep track of both the physical movement of the neutrinos and their change of flavor in astrophysical systems such as core-collapse supernovae and neutron star mergers. The complicated arrangement and large number of neutrinos in these systems make it nearly impossible to follow all or even a subset of the neutrinos.

Jul 12, 2024

China: Quantum tech cracks subatomic code, beats supercomputers

Posted by in categories: energy, quantum physics, supercomputing

A Chinese research team has achieved a significant milestone in quantum computing by successfully building a device that can simulate the movement of electrons within a solid-state material.

This research, published in the journal Nature, showcases the potential of quantum computers to surpass even the most powerful supercomputers.

Understanding electron behavior is crucial for scientific advancements, particularly in the fields of magnetism and high-temperature superconducting materials. These materials could revolutionize electricity transmission and transportation, leading to significant energy savings and technological progress.

Jul 11, 2024

Physicists suggest tachyons can be reconciled with the special theory of relativity

Posted by in categories: particle physics, quantum physics

However, a paper just published in Physical Review D by physicists from the University of Warsaw and the University of Oxford has shown that many of these prejudices were unfounded. Tachyons are not only not ruled out by the theory, but allow us to understand its causal structure better.

Motion at speeds beyond the of light is one of the most controversial issues in physics. Hypothetical particles that could move at superluminal speeds, called tachyons (from the Greek tachýs—fast, quick), are the “enfant terrible” of modern physics. Until recently, they were widely regarded as creations that do not fit into the .

At least three reasons for the non-existence of tachyons within were known so far. The first: the ground state of the tachyon field was supposed to be unstable, which would mean that such superluminal particles would form “avalanches.” The second: a change in the inertial observer was supposed to lead to a change in the number of particles observed in his reference system, yet the existence of, say, seven particles cannot depend on who is looking at them. The third reason: the energy of the superluminal particles could take on negative values.

Jul 11, 2024

With spin centers, quantum computing takes a step forward

Posted by in categories: biotech/medical, quantum physics, robotics/AI

Quantum computing, which uses the laws of quantum mechanics, can solve pressing problems in a broad range of fields, from medicine to machine learning, that are too complex for classical computers.

Jul 11, 2024

Observation of 3D acoustic quantum Hall states

Posted by in category: quantum physics

The quantum Hall effect (QHE) is one of the most notable discoveries in condensed matter physics, opening the door to topological physics. Extending QHE into three dimensions is an inspiring but challenging endeavor. This difficulty arises because the Landau levels in three dimensions extend into bands along the direction of the magnetic field, preventing the opening of bulk gaps.

Jul 11, 2024

Physicists demonstrate quantum scale inverse Mpemba effect with single trapped ions

Posted by in category: quantum physics

A team of physicists at the Weizmann Institute of Science in Israel has successfully demonstrated the inverse Mpemba effect at the quantum level using single trapped ions. In their study, published in the journal Physical Review Letters, the group demonstrated the effect by trapping a strontium-88 ion coupled to an external thermal bath.

Page 19 of 791First1617181920212223Last