Toggle light / dark theme

“China’s Quantum Leap Unveiled”: New Quantum Processor Operates 1 Quadrillion Times Faster Than Top Supercomputers, Rivalling Google’s Willow Chip

IN A NUTSHELL 🚀 Chinese scientists have developed the Zuchongzhi 3.0 quantum processor, which is significantly faster than the world’s top supercomputers. 🔍 The processor features 105 superconducting qubits and demonstrates unprecedented speed, completing tasks in seconds that would take traditional supercomputers billions of years. 💡 With enhanced coherence time, gate fidelity, and error correction.

A quantum random access memory based on transmon-controlled phonon routers

Recent technological advances have opened new exciting possibilities for the development of cutting-edge quantum devices, including quantum random access memory (QRAM) systems. These are memory architectures specifically meant to be integrated inside quantum computers, which can simultaneously retrieve data from multiple ‘locations’ leveraging a quantum effect known as coherent superposition.

Scientists achieve precision activation of quantum defects in diamond

A new study led by researchers at the Universities of Oxford, Cambridge and Manchester has achieved a major advance in quantum materials, developing a method to precisely engineer single quantum defects in diamond—an essential step toward scalable quantum technologies. The results have been published in the journal Nature Communications.

Using a new two-step fabrication method, the researchers demonstrated for the first time that it is possible to create and monitor, “as they switch on,” individual Group-IV quantum defects in diamond—tiny imperfections in the diamond that can store and transmit information using the exotic rules of quantum physics.

By carefully placing single tin atoms into synthetic diamond crystals and then using an ultrafast laser to activate them, the team achieved pinpoint control over where and how these quantum features appear. This level of precision is vital for making practical, large-scale quantum networks capable of ultra-secure communication and distributed quantum computing to tackle currently unsolvable problems.

A new problem that only quantum computing can solve

As quantum computing develops, scientists are working to identify tasks for which quantum computers have a clear advantage over classical computers. So far, researchers have only pinpointed a handful of these problems, but in a new paper published in Physical Review Letters, scientists at Los Alamos National Laboratory have added one more problem to this very short list.

“One of the central questions that faces is what classes of problems they can most efficiently solve but cannot,” says Marco Cerezo, the Los Alamos team’s lead scientist. “At the moment, this is the Holy Grail of quantum computing, because you can count on two hands such problems. In this paper, we’ve just added another.”

Quantum computing harnesses the unique laws of quantum physics, such as superposition, entanglement and interference, which allow for information processing capabilities beyond those of classical devices. When fully realized, quantum computing promises to make advancements in cryptography, simulations of quantum systems and data analysis, among many other fields. But before this can happen, researchers still need to develop the foundational science of quantum computing.

Understanding quantum computing’s most troubling problem—the barren plateau

For the past six years, Los Alamos National Laboratory has led the world in trying to understand one of the most frustrating barriers that faces variational quantum computing: the barren plateau.

“Imagine a landscape of peaks and valleys,” said Marco Cerezo, the Los Alamos team’s lead scientist. “When optimizing a variational, or parameterized, , one needs to tune a series of knobs that control the solution quality and move you in the landscape. Here, a peak represents a bad solution and a valley represents a good solution. But when researchers develop algorithms, they sometimes find their model has stalled and can neither climb nor descend. It’s stuck in this space we call a barren .”

For these quantum computing methods, barren plateaus can be mathematical dead ends, preventing their implementation in large-scale realistic problems. Scientists have spent a lot of time and resources developing quantum algorithms only to find that they sometimes inexplicably stall. Understanding when and why barren plateaus arise has been a problem that has taken the community years to solve.

Harnessing magnons for quantum information processing

Researchers have determined how to use magnons—collective vibrations of the magnetic spins of atoms—for next-generation information technologies, including quantum technologies with magnetic systems.

From the computer hard drives that store our data to the motors and engines that drive power plants, magnetism is central to many transformative technologies. Magnetic materials are expected to play an even larger role in new technologies on the horizon: the transmission and processing of quantum information and the development of quantum computers.

New research led by scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory developed an approach to control the collective magnetic properties of atoms in real time and potentially deploy them for next-generation information technologies. This discovery could aid in developing future quantum computers, which can perform tasks that would be impossible using today’s computers, as well as “on chip” technologies—with magnetic systems embedded on semiconductor chips, or “on chip.”

Decades-old mystery of AlCl dipole moment resolved

In a study that closes a long-standing knowledge gap in fundamental science, researchers Boerge Hemmerling and Stephen Kane at the University of California, Riverside, have successfully measured the electric dipole moment of aluminum monochloride (AlCl), a simple yet scientifically crucial diatomic molecule.

Their results, published in Physical Review A, have implications for , astrophysics, and planetary science. The paper is titled “Measurement of the of AlCl by Stark-level spectroscopy.”

Until now, the dipole moment of AlCl was only estimated, with no experimental confirmation. The study’s precise measurement now replaces the theoretical predictions with solid experimental data.