Toggle light / dark theme

Scientists realize a three-qubit quantum register in a silicon photonic chip

Quantum technologies are highly promising devices that process, transfer or store information leveraging quantum mechanical effects. Instead of relying on bits, like classical computers, quantum devices rely on entangled qubits, units of information that can also exist in multiple states (0 and 1) at once.

A research team at the University of California Berkeley (UC Berkeley) supervised by Alp Sipahigil recently demonstrated the potential of leveraging atomic-scale defects on silicon chips, known as T-centers, to create small multi-qubit memory units that store quantum information (i.e., quantum registers).

Their paper, published in Nature Nanotechnology, could open new possibilities for the development of quantum technologies that are based on silicon, which is the most widely used material within the electronics industry.

DNA Gene’s Basic Structure as a Nonperturbative Circuit Quantum Electrodynamics: Is RNA Polymerase II the Quantum Bus of Transcription?

Previously, we described that Adenine, Thymine, Cytosine, and Guanine nucleobases were superconductors in a quantum superposition of phases on each side of the central hydrogen bond acting as a Josephson Junction. Genomic DNA has two strands wrapped helically around one another, but during transcription, they are separated by the RNA polymerase II to form a molecular condensate called the transcription bubble. Successive steps involve the bubble translocation along the gene body. This work aims to modulate DNA as a combination of n-nonperturbative circuits quantum electrodynamics with nine Radio-Frequency Superconducting Quantum Interference Devices (SQUIDs) inside. A bus can be coupled capacitively to a single-mode microwave resonator. The cavity mode and the bus can mediate long-range, fast interaction between neighboring and distant DNA SQUID qubits.

The Dark Halo That Never Lit Up

Galaxies announce themselves through the light of billions of stars, all embedded in vast clumps, or “halos,” of dark matter. But researchers may have spotted, for the first time, a starless halo of dark matter—containing only a gas cloud. The result was announced by Rachael Beaton of the Space Telescope Science Institute in Maryland at the meeting of the American Astronomical Society in Phoenix, Arizona. Using observations from the Hubble Space Telescope, Beaton and her collaborators showed that the object, known as Cloud-9, contains a negligible amount of stars [1]. “There is nothing like this that we have found so far in the Universe,” Beaton said in a press conference last week.

Cloud-9’s makeup—as inferred from radio and optical observations—would qualify it as the first example of a REionization-Limited H I Cloud (RELHIC), a starless dark matter halo filled with neutral hydrogen gas (H I). RELHICs are thought to be leftovers of dark matter clumps that couldn’t accrue a sufficient amount of gas to form stars, says the project’s principal investigator Alejandro Benítez-Llambay of the University of Milano-Bicocca in Italy. A RELHIC is “a tale of a failed galaxy,” he says.

Starless halos arise naturally within the standard paradigm of cosmology: the lambda cold dark matter (ΛCDM) model, where Λ refers to a “cosmological constant” that describes dark energy. According to ΛCDM, dark matter can cluster into halos that provide the gravitational backbone for galaxy formation. The model also predicts that there is a critical mass below which halos would be too small to ever form stars. Spotting unlit halos might sound hopeless, but simulations by Benítez-Llambay and collaborators in 2017 suggested that halos within a narrow mass range may exist as RELHICs (a term they coined) [2]. According to their calculations, RELHICs would have masses close to the critical value for galaxy formation. Crucially, the compact, hydrogen-filled cores of these objects provide a potential observational window, since hydrogen clouds have a characteristic radio emission.

A new valve for quantum matter: Steering chiral fermions by geometry alone

A collaboration between Stuart Parkin’s group at the Max Planck Institute of Microstructure Physics in Halle (Saale) and Claudia Felser’s group at the Max Planck Institute for Chemical Physics of Solids in Dresden has realized a fundamentally new way to control quantum particles in solids. Writing in Nature, the researchers report the experimental demonstration of a chiral fermionic valve—a device that spatially separates quantum particles of opposite chirality using quantum geometry alone, without magnetic fields or magnetic materials.

The work was driven by Anvesh Dixit, a Ph.D. student in Parkin’s group in Halle, and the first author of the study, who designed, fabricated, and measured the mesoscopic devices that made the discovery possible.

“This project was only possible because we could combine materials with exceptional topological quality and transport experiments at the mesoscopic quantum limit,” says Anvesh Dixit. “Seeing chiral fermions separate and interfere purely due to quantum geometry is truly exciting.”

LANL: Los Alamos To Play Key Role In Renewed Quantum Science Center

PRESS RELEASE — The Department of Energy has renewed funding for the Quantum Science Center, with Los Alamos National Laboratory continuing to play a vital role along with Oak Ridge National Laboratory in the center’s mission to advance quantum science and technology. The center will be funded for $125 million over five years to focus on quantum-accelerated high-performance computing.

“The Quantum Science Center is establishing the scientific and technical foundation for quantum computing,” said Mark Chadwick, associate Laboratory director for Simulation, Computing and Theory. “In this new, critical evolution for the center, the integration of quantum and high-performance computing stands to accelerate advancements in crucial scientific areas related to technological progress and even national security applications.”

The Quantum Science Center combines the efforts of three national laboratories, with ORNL hosting the center and Los Alamos a principal partner alongside various universities, industry partners and other laboratories. Created as one of five National Quantum Information Science Research Centers supported by the DOE’s Office of Science, the Quantum Science Center seeks to create a scientific ecosystem for the advancement of fault-tolerant, quantum-accelerated high-performance computing.

Trends and Insights on Cybersecurity, Artificial Intelligence, and Quantum Computing

2026 — Trends and Insights on Cybersecurity, Artificial Intelligence, and Quantum Computing

By Chuck Brooks


Dear readers, Happy New Year! Please see the latest Security & Tech Insights newsletter that explores evolving tech and security trends for 2026. It is going to be an exciting year for AI, Quantum, Cybersecurity, Space and Robotics! Thanks, and best Chuck Brooks

What Every Company Needs To Know About Cybersecurity In 2026

Mindscape 155 | Stephen Wolfram on Computation, Hypergraphs, and Fundamental Physics

I like stephen Wolfrem I’m an admirer.


Patreon: https://www.patreon.com/seanmcarroll.
Blog post with audio player, show notes, and transcript: https://www.preposterousuniverse.com/podcast/2021/07/12/155-…l-physics/

It’s not easy, figuring out the fundamental laws of physics. It’s even harder when your chosen methodology is to essentially start from scratch, positing a simple underlying system and a simple set of rules for it, and hope that everything we know about the world somehow pops out. That’s the project being undertaken by Stephen Wolfram and his collaborators, who are working with a kind of discrete system called “hypergraphs.” We talk about what the basic ideas are, why one would choose this particular angle of attack on fundamental physics, and how ideas like quantum mechanics and general relativity might emerge from this simple framework.

Stephen Wolfram received his Ph.D. in physics from Caltech. He is the founder and CEO of Wolfram Research, and the creator of Mathematica, Wolfram|Alpha, and the Wolfram Language. Among his awards are a MacArthur Fellowship. Among his books is A New Kind of Science. He recently launched the Wolfram Physics Project.

Mindscape Podcast playlist: https://www.youtube.com/playlist?list=PLrxfgDEc2NxY_fRExpDXr87tzRbPCaA5x.

This is why I believe that the future already exists

Want to restore the planet’s ecosystems and see your impact in monthly videos? The first 100 people to join Planet Wild with my code SABINE41 will get the first month for free at: https://planetwild.com/r/sabinehossen… today’s video I explain the “block universe” in physics. It is a direct consequence of Einstein’s theory of general relativity and implies that the past, present, and future all exist in the same sense. I have talked about this previously, but in the past years I have changed my mind about the role of quantum mechanics in this argument. 📚 Buy my book ➜ https://amzn.to/3HSAWJW 👕T-shirts, mugs, posters and more: ➜ https://sabines-store.dashery.com/ 💌 Support me on Donorbox ➜ https://donorbox.org/swtg 👉 Transcript with links to references on Patreon ➜ / sabine 📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/ 📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle… 👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl… 🔗 Join this channel to get access to perks ➜ / @sabinehossenfelder #physics #philosophy.
If you want to get to know them better first, check out their mission fighting ocean plastic: https://planetwild.com/r/sabinehossen

In today’s video I explain the \.

/* */