Toggle light / dark theme

High-energy particles or gamma rays are usually needed to kick an atomic nucleus up to a higher-energy state. But last year, scientists excited thorium-229 nuclei with just laser light (see Viewpoint: Shedding Light on the Thorium-229 Nuclear Clock Isomer). Laser-excited nuclei could be useful for making precise timekeepers and sensitive quantum sensors. And now, Wolfram Ratzinger at the Weizmann Institute of Science in Israel and his colleagues have shown how these nuclei also provide a way to detect certain speculative particles that may constitute dark matter [1].

Several models of dark matter involve axions or other extremely light bosons. Thanks to their lightness, these particles would have to be abundant—so much so that they would collectively behave like a classical field, oscillating at a frequency proportional to their mass. The particles’ interactions with the building blocks of nuclei—quarks and gluons—would cause various nuclear properties to oscillate at that same frequency. Among those properties is the energy of the photon emitted by an excited thorium-229 nucleus. Crucially, the oscillations in that energy are predicted to be much more pronounced, and therefore easier to detect, than those in other properties.

Ratzinger and his colleagues conducted the first-ever search for these oscillations in a previously reported spectrum of light emitted by excited thorium-229 nuclei. Finding no oscillations, the researchers set upper limits on the coupling strength of ultralight dark matter particles to quarks and gluons for particles ranging in mass from 10–20 to 10–13 eV. These limits are less stringent than those obtained through other means, but the team anticipates that ongoing and future experiments could set much stronger and possibly decisive constraints.

Meta released a massive trove of chemistry data Wednesday that it hopes will supercharge scientific research, and is also crucial for the development of more advanced, general-purpose AI systems.

The company used the data set to build a powerful new AI model for scientists that can speed up the time it takes to create new drugs and materials.

The Open Molecules 2025 effort required 6 billion compute hours to create, and is the result of 100 million calculations that simulate the quantum mechanics of atoms and molecules in four key areas chosen for their potential impact on science.

In a new study published in Physical Review Letters, scientists have estimated a new lower bound on the mass of ultra-lightweight bosonic dark matter particles.

Purported to make up about 85% of the matter content in the universe, dark matter has eluded direct observation. Its existence is only inferred by its gravitational effects on cosmic structures.

Because of this, scientists have been unable to identify the nature of dark matter and, therefore, its mass. According to our current model of quantum mechanics, all fundamental particles must be either fermions or bosons.

Konstantin Vodopyanov, a professor at the College of Sciences and CREOL, the College of Optics and Photonics, recently co-authored a study published in the journal Optica. This research examines electro-optic sampling (EOS), a technique that advances fields such as quantum physics, molecular spectroscopy and biomedical sensing.

As a professor at the two colleges, Vodopyanov shows how working across different fields can lead to new ideas. The Optica Fellow’s research, which combines interdisciplinary work, is shaping the future of quantum physics and other areas of science.

His new study explores how EOS transmits through crystals that change in response to an applied electric field. This technique allows researchers to accurately capture the shape and timing of electric fields across a broad range of frequencies.

What would happen if you combined the unparalleled efficiency of a superconductor with the flexibility and controllability of a semiconductor? Thanks to a new breakthrough in quantum materials, we may be getting an answer soon.

In an article published in Communications Physics, a multi-institutional research team led by The University of Osaka announces the successful observation of the so-called superconducting diode effect in an Fe(Se, Te)/FeTe heterostructure. The paper is titled “A scaling relation of vortex-induced rectification effects in a superconducting thin-film heterostructure.”

The article describes a series of experiments in which the material developed a preference for current to flow in a particular direction, a phenomenon known as rectification, under a broad range of temperature and magnetic fields.

The findings are published in the journal Physical Review Letters.

Compared with their classical counterparts, systems made up of many quantum particles—such as quantum computers—are horrendously complex to analyze and simulate. This complexity is due in part to the strong correlations between particles, which can act over long distances.

In the future, quantum technology will become the standard for extremely fast computers. These kinds of machines will be important in everything from space technology to mineral exploration and the development of new medicines.

“Quantum technology is often associated with that have been developed in advanced, completely clean environments,” says Professor Jon Otto Fossum from NTNU’s Department of Physics.

But Fossum and colleagues have good news.

Whether bismuth is part of a class of materials highly suitable for quantum computing and spintronics was a long‑standing issue. Kobe University research has now revealed that the true nature of bismuth was masked by its surface, and in doing so uncovered a new phenomenon relevant to all such materials.

The team have published their results in a letter in the journal Physical Review B.

There is a class of materials that are insulators in their bulk, but robustly conductive at their surface. As this conductivity does not suffer from defects or impurities, such “topological materials,” as they are called, are expected to be highly suitable for use in quantum computers, spintronics and other advanced electronic applications.