Menu

Blog

Archive for the ‘quantum physics’ category: Page 2

Jul 29, 2020

The ‘butterfly effect’ is wrong and reality can ‘heal itself’, say quantum scientists

Posted by in category: quantum physics

Sending a qubit through a simulation of the past had it return to the present generally unchanged.

Jul 29, 2020

Waveguide quantum electrodynamics with superconducting artificial giant atoms

Posted by in categories: particle physics, quantum physics

Superconducting giant atoms are realized in a waveguide by coupling small atoms to the waveguide at multiple discrete locations, producing tunable atom–waveguide coupling and enabling decoherence-free interactions.

Jul 29, 2020

Solving materials problems with a quantum computer

Posted by in categories: chemistry, engineering, information science, particle physics, quantum physics, supercomputing

Quantum computers have enormous potential for calculations using novel algorithms and involving amounts of data far beyond the capacity of today’s supercomputers. While such computers have been built, they are still in their infancy and have limited applicability for solving complex problems in materials science and chemistry. For example, they only permit the simulation of the properties of a few atoms for materials research.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and the University of Chicago (UChicago) have developed a method paving the way to using quantum computers to simulate realistic molecules and complex materials, whose description requires hundreds of atoms.

The research team is led by Giulia Galli, director of the Midwest Integrated Center for Computational Materials (MICCoM), a group leader in Argonne’s Materials Science division and a member of the Center for Molecular Engineering at Argonne. Galli is also the Liew Family Professor of Electronic Structure and Simulations in the Pritzker School of Molecular Engineering and a Professor of Chemistry at UChicago. She worked on this project with assistant scientist Marco Govoni and graduate student He Ma, both part of Argonne’s Materials Science division and UChicago.

Jul 29, 2020

The quantum Hall effect continues to reveal its secrets to mathematicians and physicists

Posted by in categories: mathematics, quantum physics

A transformative experiment is yielding fresh insights 40 years after the effect’s discovery — and energizing transdisciplinary collaborations.

Jul 28, 2020

The Government Is Building an Unhackable Quantum Internet

Posted by in categories: computing, engineering, government, internet, quantum physics

The U.S. Department of Energy (DoE) has announced a plan to make a quantum internet it says is virtually unhackable. This is definitely a long-term plan that will require new kinds of engineering and technology, not something that will be implemented next year. Let’s take a look at the concept, the plan the DoE has laid out, and how long it all might take.

Within the framework of quantum mechanics, the network proposed here is pretty intuitive. (That’s a big caveat, though!) The report begins with a surprising notion: Although headlines and research have focused on the power of quantum computing, we’re far away from any practical and recognizable computer powered by quantum phenomena. The idea of a quantum network, the DoE says, is far closer to our reach.

🤯 You like quantum. We like quantum. Let’s nerd out together.

Jul 26, 2020

Dive Deep Into Hidden World of Quantum States to Find Silicon’s Successor in Race Against Moore’s Law

Posted by in categories: materials, quantum physics

Discovery by scientists at Berkeley Lab, UC Berkeley could help find silicon’s successor in race against Moore’s Law.

In the search for new materials with the potential to outperform silicon, scientists have wanted to take advantage of the unusual electronic properties of 2D devices called oxide heterostructures, which consist of atomically thin layers of materials containing oxygen.

Scientists have long known that oxide materials, on their own, are typically insulating – which means that they are not electrically conductive. When two oxide materials are layered together to form a heterostructure, new electronic properties such as superconductivity – the state in which a material can conduct electricity without resistance, typically at hundreds of degrees below freezing – and magnetism somehow form at their interface, which is the juncture where two materials meet. But very little is known about how to control these electronic states because few techniques can probe below the interface.

Continue reading “Dive Deep Into Hidden World of Quantum States to Find Silicon’s Successor in Race Against Moore’s Law” »

Jul 25, 2020

US Just Unveiled Its Blueprint For a “Virtually Unhackable” Quantum Internet

Posted by in categories: computing, engineering, internet, quantum physics

US officials and scientists have begun laying the groundwork for a more secure “virtually unhackable” internet based on quantum computing technology.

At a presentation Thursday, Department of Energy (DOE) officials issued a report that lays out a blueprint strategy for the development of a national quantum internet, using laws of quantum mechanics to transmit information more securely than on existing networks.

The agency is working with universities and industry researchers on the engineering for the initiative with the aim of creating a prototype within a decade.

Continue reading “US Just Unveiled Its Blueprint For a ‘Virtually Unhackable’ Quantum Internet” »

Jul 25, 2020

Strange metals: New state of matter shares properties with black holes

Posted by in categories: cosmology, particle physics, quantum physics

“Strange metals” have that name for a reason – these materials exhibit some unusual conductive properties and surprisingly, even have things in common with black holes. Now, a new study has characterized them in more detail, and found that strange metals constitute a new state of matter.

So-called strange metals differ from regular metals because their electrical resistance is directly linked to temperature. Electrons in strange metals are seen to lose their energy as fast as the laws of quantum mechanics allow. But that’s not all – their conductivity is also linked to two fundamental constants of physics: Planck’s constant, which defines how much energy a photon can carry, and Boltzmann’s constant, which relates the kinetic energy of particles in a gas with the temperature of that gas.

While these properties have been well observed over the years, scientists have had a hard time accurately modeling strange metals. So in a new study, researchers from the Flatiron Institute and Cornell University set out to solve the model, right down to absolute zero – lower than the lowest possible temperature for materials.

Jul 24, 2020

A New State of Matter –“Black Hole Physics of Strange Metals”

Posted by in categories: cosmology, quantum physics

“Not only does God play dice but… he sometimes throws them where they cannot be seen,” said Stephen Hawking about the paradoxical physics of black Holes. Welcome to the bizarre quantum world of “strange metals” –a new state of matter.

“The fact that we call them strange metals should tell you how well we understand them. Strange metals share remarkable properties with black holes, opening exciting new directions for theoretical physics,” says Olivier Parcollet, a senior research scientist at the Flatiron Institute’s Center for Computational Quantum Physics (CCQ), about the quantum world of metals that dissipate energy as fast as they’re allowed to under the laws of quantum mechanics. The electrical resistivity of a strange metal, unlike that of ordinary metals, is proportional to the temperature.

Even by the standards of quantum physicists, reports the Flatiron Institute, strange metals are just plain odd. Generating a theoretical understanding of strange metals is one of the biggest challenges in condensed matter physics. Now, using cutting-edge computational techniques, researchers from the Flatiron Institute and Cornell University have solved the first robust theoretical model of strange metals. The work reveals that strange metals are a new state of matter, the researchers report July 22 in the Proceedings of the National Academy of Sciences.

Continue reading “A New State of Matter --‘Black Hole Physics of Strange Metals’” »

Jul 24, 2020

Quantum loop: US unveils blueprint for ‘virtually unhackable’ internet

Posted by in categories: computing, engineering, internet, quantum physics

US officials and scientists have begun laying the groundwork for a more secure “virtually unhackable” internet based on quantum computing technology.

At a presentation Thursday, Department of Energy (DOE) officials issued a report that lays out a blueprint strategy for the development of a national quantum internet, using laws of quantum mechanics to transmit information more securely than on existing networks.

The agency is working with universities and industry researchers on the engineering for the initiative with the aim of creating a prototype within a decade.

Page 2 of 30912345678Last