Toggle light / dark theme

To those unfamiliar with quantum mechanics, the achievement might seem minor. Yet in the world of quantum research, this moment is transformative. With the ability to create quantum entanglement between two light sources, a host of commercial technologies could soon become reality.

Control over multiple quantum light sources forms the bedrock of quantum networks. Entanglement —where two light sources are linked, no matter the distance—remains a pillar of quantum physics. Without it, building fast quantum computers and developing next-generation encryption would stay out of reach.

The findings, recently published in Science, spotlight just how far the field has come. Researchers at the Niels Bohr Institute underscored the breakthrough’s major impact on the future of quantum technologies.

Long before human minds contemplated their own existence, information was already flowing. Not as bits in silicon, but as a fundamental flux of differentials in the fabric of reality itself. The universe, at its most elemental level, may be understood not merely as matter and energy, but as a vast information-processing system — a perspective that opens new avenues for understanding the enigma of consciousness. The question that has bedeviled philosophers and scientists alike is not simply what consciousness is, but how it emerges, and whether it represents something unique in the cosmic landscape or is merely a sophisticated expression of processes inherent to reality itself.

Panpsychism — the view that consciousness is fundamental and ubiquitous throughout the universe — has experienced a renaissance in recent philosophical discourse. Yet despite its elegant simplicity, it leaves crucial questions unanswered, particularly regarding the mechanism by which consciousness manifests in systems of varying complexity. This essay proposes that consciousness can be more productively understood as an autonomous region of information processing within a general field of information, a perspective that synthesizes insights from systems theory, information dynamics, the science of living systems, and recent research on microtubular functions to transcend traditional panpsychist frameworks.

To appreciate consciousness as an emergent property of information processing, we must first recognize information’s fundamental role in the universe. Wheeler’s famous dictum “it from bit” suggests that physical reality emerges from information (Wheeler, 1990). This perspective has been substantiated by advances in quantum information theory, which demonstrates that information is not merely about reality but constitutive of it. As Vedral (2010, p. 3) argues, “Quantum physics requires us to abandon the distinction between information and reality.” The quantum world reveals itself not as a collection of things but as potentialities and relationships — informational patterns that coalesce into what we perceive as physical reality.

Why do the two most fundamental theories of the universe contradict each other? In this mind-bending segment from Quantum Convergance, we explore how Einstein’s general relativity and quantum mechanics—despite their opposing principles—both point toward one astonishing truth: the universe is not made of separate parts, but of undivided wholeness.

Using powerful metaphors like the whirlpool and grounded scientific insight from David Bohm and Einstein, this video unravels how the illusion of separateness may be the greatest misunderstanding in modern physics. Relativity describes the universe as a smooth, local continuum, while quantum theory insists on jumps, discontinuity, and entanglement.

But what if both are right… and incomplete?

🔹 Narrated by David Bohm.
🔹 From the full documentary: Quantum Convergance.

Learn more — https://www.infinitepotential.com/

In the future, quantum computers could rapidly simulate new materials or help scientists develop faster machine‐learning models, opening the door to many new possibilities.

But these applications will only be possible if quantum computers can perform operations extremely quickly, so scientists can make measurements and perform corrections before compounding error rates reduce their accuracy and reliability.

The efficiency of this measurement process, known as readout, relies on the strength of the coupling between photons, which are particles of light that carry , and artificial atoms, units of matter that are often used to store information in a quantum computer.

Atomic-scale imaging reveals that chalcogen atoms play a crucial role in Cooper pairing in Fe-based superconductors, offering new insights into high-Tc superconductivity mechanisms. Superconductivity in quantum materials, whether the Cooper pairing on the Fermi surface is mediated by phonons or b

Teleportation isn’t just science fiction anymore — scientists have found a way to send information more clearly and efficiently than ever before.

Using an incredibly tiny material called a nanophotonic platform, researchers dramatically improved how well quantum information can travel, even with just single particles of light. This breakthrough means teleportation could one day be part of real-world communication networks, opening the door to a future where information zips through space in ways once thought impossible.

Nonlinear optics: the key to quantum communication.

Researchers have demonstrated a new quantum sensing technique that widely surpasses conventional methods, potentially accelerating advances in fields ranging from medical imaging to foundational physics research, as shown in a study published in Nature Communications.

For decades, the performance of quantum sensors has been limited by decoherence, which is unpredictable behavior caused by environmental noise.

“Decoherence causes the state of a quantum system to become randomly scrambled, erasing any quantum sensing signal,” said Eli Levenson-Falk, senior author of the study, associate professor of physics and astronomy at the USC Dornsife College of Letters, Arts and Sciences and associate professor of electrical and computer engineering at the USC Viterbi School of Engineering.