Toggle light / dark theme

“They Made It 2,000× More Efficient!”: New Quantum Computer Crushes Supercomputers by Using Less Power and Solving Problems 200× Faster

IN A NUTSHELL 🚀 Nord Quantique introduces a revolutionary bosonic qubit design that integrates error correction directly into its structure. 🌱 The new quantum computers are significantly energy-efficient, using only a fraction of the power required by traditional systems. 🔧 Utilizing multimode encoding, Nord Quantique’s system achieves a 1:1 ratio of physical to logical qubits.

Rabi-like splitting observed under electrical control in artificial magnets

Rabi-like splitting is one of the key concepts in modern quantum technology. Fully understanding it can help us advance our knowledge in quantum information processing. Assistant Professor Aakanksha Sud (Tohoku University), Dr. Kei Yamamoto (JAEA), Professor Shigemi Mizukami (Tohoku University), and collaborators discovered that Rabi-like splitting could be achieved using nonlinear coupling, which remarkably preserves the symmetries of the system. This result opens up various possibilities to deepen our understanding of nonlinear dynamics and coupling phenomena in artificial control.

The findings were published in Physical Review Letters on June 20, 2025.

In , when there is a coupling between two harmonic oscillators with an ideal oscillation , the oscillation frequency splits to two different frequencies in the coupled system. The difference in these two frequencies is referred to as Rabi .

This Simple Laser Trick Could Supercharge Quantum Tech

In a major advance for quantum technology, researchers have discovered a surprisingly simple method to preserve atomic spin coherence using just a single laser beam. Scientists have developed a surprisingly effective technique to preserve atomic information, addressing a major obstacle in the adv

This Forbidden Particle Could Break String Theory

Physicists from the University of Pennsylvania, working with colleagues at Arizona State University, are examining the limitations of a framework that aims to unify the laws of physics throughout the universe. There are two great pillars of thought that don’t quite fit together in physics. The St

Shedding new light on invisible forces: Hidden magnetic clues in everyday metals unlocked

A team of scientists has developed a powerful new way to detect subtle magnetic signals in common metals like copper, gold, and aluminum—using nothing more than light and a clever technique. Their research, recently published in Nature Communications, could pave the way for advances in everything from smartphones to quantum computing.

For over a century, scientists have known that bend in a magnetic field—a phenomenon known as the Hall effect. In like iron, this effect is strong and well understood. But in ordinary, non-magnetic metals like copper or gold, the effect is much weaker.

In theory, a related phenomenon—the optical Hall effect—should help scientists visualize how electrons behave when light and magnetic fields interact. But at , this effect has remained far too subtle to detect. The scientific world knew it was there, but lacked the tools to measure it.

Consciousness, Matter and Quantum Strangeness; Part 1

What Is a Particle?

What Is a Particle?

How the Quantum Eraser Rewrites the Past | Space Time | PBS Digital Studios.
https://www.youtube.com/watch?v=8ORLN_KwAgs.

https://www.patreon.com/Formscapes.

https://discord.gg/4Zu98VxccW

https://twitter.com/Nalhek_Morgan.

#integral #consciousness #philosophy #videoessay #quantum #quantumphysics #metaphysics #philosophyofscience

Physicists Achieve “Holy Grail” of Summing All Feynman Diagrams

A clever method from Caltech researchers now makes it possible to unravel complex electron-lattice interactions, potentially transforming how we understand and design quantum and electronic materials. Researchers at Caltech have developed a faster and more effective technique for calculating larg

Quantum on the Cusp—What to Prepare for in the Emerging Ecosystem of Quantum Tech and Computing

Dear Friends & Colleagues, Like artificial intelligence, quantum technologies will transform our world as we know it. This issue focuses on what quantum constitutes and the promises and challenges of this emerging technology.