Archive for the ‘quantum physics’ category: Page 3

Aug 1, 2020

Sharing a secret… the quantum way

Posted by in category: quantum physics

Researchers at the University of the Witwatersrand in Johannesburg, South Africa, have demonstrated a record setting quantum protocol for sharing a secret amongst many parties. The team created an 11-dimensional quantum state and used it to share a secret amongst 10 parties. By using quantum tricks, the secret can only be unlocked if the parties trust one another. The work sets a new record for the dimension of the state (which impacts on how big the secret can be) and the number of parties with whom it is shared, and is an important step towards distributing information securely across many nodes in a quantum network.

Laser & Photonics Reviews published online the research by the Wits team led by Professor Andrew Forbes from the School of Physics at Wits University. In their paper titled: Experimental Demonstration of 11-Dimensional 10-Party Quantum Secret Sharing, the Wits team beat all prior records to share a quantum secret.

“In traditional secure quantum , information is sent securely from one party to another, often named Alice and Bob. In the language of networks, this would be considered peer-to-peer communication and by definition has only the two nodes: sender and receiver,” says Forbes.

Aug 1, 2020

Cosmic tango between the very small and the very large

Posted by in categories: cosmology, quantum physics

While Einstein’s theory of general relativity can explain a large array of fascinating astrophysical and cosmological phenomena, some aspects of the properties of the universe at the largest-scales remain a mystery. A new study using loop quantum cosmology—a theory that uses quantum mechanics to extend gravitational physics beyond Einstein’s theory of general relativity—accounts for two major mysteries. While the differences in the theories occur at the tiniest of scales—much smaller than even a proton—they have consequences at the largest of accessible scales in the universe. The study, which appears online July 29 in the journal Physical Review Letters, also provides new predictions about the universe that future satellite missions could test.

While a zoomed-out picture of the looks fairly uniform, it does have a large-scale structure, for example because galaxies and dark matter are not uniformly distributed throughout the universe. The origin of this structure has been traced back to the tiny inhomogeneities observed in the Cosmic Microwave Background (CMB)—radiation that was emitted when the universe was 380 thousand years young that we can still see today. But the CMB itself has three puzzling features that are considered anomalies because they are difficult to explain using known physics.

“While seeing one of these anomalies may not be that statistically remarkable, seeing two or more together suggests we live in an exceptional universe,” said Donghui Jeong, associate professor of astronomy and astrophysics at Penn State and an author of the paper. “A recent study in the journal Nature Astronomy proposed an explanation for one of these anomalies that raised so many additional concerns, they flagged a ‘possible crisis in cosmology.’ Using quantum loop cosmology, however, we have resolved two of these anomalies naturally, avoiding that potential crisis.”

Aug 1, 2020

Quantum machines learn ‘quantum data’

Posted by in categories: information science, quantum physics, robotics/AI, supercomputing

Skoltech scientists have shown that quantum enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a “fertile ground to develop computational insights into quantum systems.” The paper was published in the journal Physical Review A.

Quantum computers utilize quantum mechanical effects to store and manipulate information. While quantum effects are often claimed to be counterintuitive, such effects will enable quantum enhanced calculations to dramatically outperform the best supercomputers. In 2019, the world saw a prototype of this demonstrated by Google as quantum computational superiority.

Quantum algorithms have been developed to enhance a range of different computational tasks; more recently this has grown to include quantum enhanced machine learning. Quantum machine learning was partly pioneered by Skoltech’s resident-based Laboratory for Quantum Information Processing, led by Jacob Biamonte, a coathor of this paper. “Machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that are thought not to produce efficiently, so it is not surprising that quantum computers might outperform classical computers on machine learning tasks,” he says.

Jul 31, 2020

Time Travel Simulation Shows Quantum ‘Butterfly Effect’ Doesn’t Exist

Posted by in categories: computing, quantum physics, time travel

Here’s the story – our protagonist rewinds history, locates baby Hitler, and averts global war by putting him on a path to peace … but, oh noes! This sets off a domino chain of events that stops our hero from being born, or worse, kicks off the apocalypse.

Unintended ‘butterfly effect’-style consequences of time travel might be a juicy problem in science fiction, but physicists now have reason to believe in a quantum landscape, tweaking history in this way shouldn’t be a major problem.

Since going back to a previous moment in time is still in the ‘too hard’ basket, a pair of physicists from the Los Alamos National Laboratory in the US went with the next best thing and created a simulation using an IBM-Q quantum computer.

Continue reading “Time Travel Simulation Shows Quantum ‘Butterfly Effect’ Doesn’t Exist” »

Jul 30, 2020

Astrophysicists observe long-theorized quantum phenomena

Posted by in categories: energy, quantum physics, space

At the heart of every white dwarf star—the dense stellar object that remains after a star has burned away its fuel reserve of gases as it nears the end of its life cycle—lies a quantum conundrum: as white dwarfs add mass, they shrink in size, until they become so small and tightly compacted that they cannot sustain themselves, collapsing into a neutron star.

This puzzling relationship between a white dwarf’s mass and size, called the mass-radius relation, was first theorized by Nobel Prize-winning astrophysicist Subrahmanyan Chandrasekhar in the 1930s. Now, a team of Johns Hopkins astrophysicists has developed a method to observe the phenomenon itself using collected by the Sloan Digital Sky Survey and a recent dataset released by the Gaia Space Observatory. The combined datasets provided more than 3,000 white dwarfs for the team to study.

A report of their findings, led by Hopkins senior Vedant Chandra, is now in press in Astrophysical Journal and available online on arXiv.

Jul 30, 2020

Scientists make quantum technology smaller

Posted by in categories: particle physics, quantum physics

A way of shrinking the devices used in quantum sensing systems has been developed by researchers at the UK Quantum Technology Hub Sensors and Timing, which is led by the University of Birmingham.

Sensing devices have a huge number of industrial uses, from carrying out ground surveys to monitoring volcanoes. Scientists working on ways to improve the capabilities of these sensors are now using quantum technologies, based on , to improve their sensitivity.

Machines developed in laboratories using quantum technology, however, are cumbersome and difficult to transport, making current designs unsuitable for most industrial uses.

Jul 30, 2020

Engineers Built “Giant Atoms” That Enhance Quantum Computers

Posted by in categories: computing, particle physics, quantum physics

Users Guide

Ultimately, the MIT engineers hope that their giant atoms lead to a simpler, enhanced form of quantum computers.

“This allows us to experimentally probe a novel regime of physics that is difficult to access with natural atoms,” MIT engineer Bharath Kannan said in a press release. “The effects of the giant atom are extremely clean and easy to observe and understand.”

Jul 30, 2020

‘Quantum negativity’ can power ultra-precise measurements

Posted by in categories: computing, particle physics, quantum physics

Scientists have found that a physical property called ‘quantum negativity’ can be used to take more precise measurements of everything from molecular distances to gravitational waves.

The researchers, from the University of Cambridge, Harvard and MIT, have shown that can carry an unlimited amount of information about things they have interacted with. The results, reported in the journal Nature Communications, could enable far more precise measurements and power new technologies, such as super-precise microscopes and quantum computers.

Metrology is the science of estimations and measurements. If you weighed yourself this morning, you’ve done metrology. In the same way as is expected to revolutionize the way complicated calculations are done, quantum metrology, using the strange behavior of subatomic particles, may revolutionize the way we measure things.

Jul 29, 2020

The ‘butterfly effect’ is wrong and reality can ‘heal itself’, say quantum scientists

Posted by in category: quantum physics

Sending a qubit through a simulation of the past had it return to the present generally unchanged.

Jul 29, 2020

Waveguide quantum electrodynamics with superconducting artificial giant atoms

Posted by in categories: particle physics, quantum physics

Superconducting giant atoms are realized in a waveguide by coupling small atoms to the waveguide at multiple discrete locations, producing tunable atom–waveguide coupling and enabling decoherence-free interactions.

Page 3 of 31112345678Last