Toggle light / dark theme

Proteins are among the most studied molecules in biology, yet new research from the University of Göttingen shows they can still hold surprising secrets. Researchers have discovered previously undetected chemical bonds within archived protein structures, revealing an unexpected complexity in protein chemistry.

These newly identified nitrogen-oxygen-sulfur (NOS) linkages broaden our understanding of how proteins respond to , a condition where harmful oxygen-based molecules build up and can damage proteins, DNA, and other essential parts of the cell. The new findings are published in Communications Chemistry.

The research team systematically re-analyzed over 86,000 high-resolution protein structures from the Protein Data Bank, a global public repository of protein structures, using a new algorithm that they developed inhouse called SimplifiedBondfinder. This pipeline combines , quantum mechanical modeling, and structural refinement methods to reveal subtle that were missed by conventional analyses.

The correlated errors in superconducting qubits have been linked to high-energy particle impacts from cosmic rays, but a direct observation has been lacking. Here, the authors measure the quasiparticle bursts and correlated errors and separate the contributions of cosmic-ray muons and γ-rays in a 63-qubit processor.

The orbital angular momentum of electrons has long been considered a minor physical phenomenon, suppressed in most crystals and largely overlooked. Scientists at Forschungszentrum Jülich have now discovered that in certain materials it is not only preserved but can even be actively controlled. This is due to a property of the crystal structure called chirality, which also influences many other processes in nature.

The discovery has the potential to lead to a new class of electronic components capable of transmitting information with exceptional robustness and energy efficiency.

From electronics to spintronics, and now to orbitronics: In classical electronics, it is primarily the charge of the electron that counts. In modern approaches such as and spintronics, the focus has shifted to the electron’s spin.

In a discovery that’s already turning heads in the scientific world, a team of physicists has achieved what was once thought impossible: they’ve measured the actual shape of a moving electron. This leap forward could not only reshape how we understand matter at the smallest scale—it might also unlock a new era of smarter, faster, and more energy-efficient electronics.

We also simulated “open-system” dynamics, where the molecule interacts with its environment. This is typically a much harder problem for classical computers.

By injecting controlled noise into the ion’s environment, we replicated how real molecules lose energy. This showed environmental complexity can also be captured by quantum simulation.

The qualia problem of perception is simply pointing out that the way we perceive the world is in terms of subjective qualities rather than numerical quantities. For example, we perceive the color of light in the things we see rather than the frequency of light wave vibrations or wavelengths, just as we perceive the quality of the sounds we hear rather than the frequency of sound wave vibrations. Another example is emotional qualities, like the perception of pleasure and pain and the perception of other emotional qualities, like the emotional qualities that color the perception of the emotional body feelings we perceive with emotional expressions of fear and desire. There is no possible way to understand the perception of these emotional qualities, just as there is no way to understand the perception of the colors we see or the qualities of the sounds we hear, in terms of the neuronal firing rates of neurons in the brain or other nervous systems. The frequency of wave vibrations and the neuronal firing rates of neurons are both examples of quantities. The problem is we do not perceive things in terms of numerical quantities, but rather in terms of subjective qualities.

All our physical theories are formulated in terms of numerical quantities, not in terms of subjective qualities. For example, in ordinary quantum theory or in quantum field theory, we speak of the frequency of light wave vibrations or the wavelength of a light wave in terms of a quantum particle called the photon. A photon or light wave is characterized by the numerical quantities of frequency and wavelength. When we formulate the nature of a light wave or photon in quantum theory in terms of Maxwell’s equations for the electromagnetic field, we can only describe numerical quantities. In ordinary quantum theory and quantum field theory, the electromagnetic field is the quantum wave-function, ψ(x, t), that specifies the quantum probability that the point particle called the photon can be measured at a position x in space at a moment t in time. That quantum probability is specified in terms of the frequency and wavelength that characterizes the wave-function for the photon.

If you’ve ever watched a flock of birds move in perfect unison or seen ripples travel across a pond, you’ve witnessed nature’s remarkable ability to coordinate motion. Recently, a team of scientists and engineers at Rice University discovered a similar phenomenon on a microscopic scale, where tiny magnetic particles driven by rotating fields spontaneously move along the edges of clusters driven by invisible “edge currents” that follow the rules of an unexpected branch of physics.

The research is published in the journal Physical Review Research.

“When I saw the initial data—with streams of particles moving faster along the edges than in the middle—I said ‘these are edge flows’ and we got to work exploring this,” said corresponding author Evelyn Tang, assistant professor of physics and astronomy. “What’s very exciting is that we can explain their emergence using ideas from topological physics, a field that became prominent due to quantum computers and .”

Quantum computers hold the potential to revolutionize the possibilities for solving difficult computational problems that would take classical computers many years to resolve. But for those computers to meet their potential, they need working quantum bits, or qubits. The hunt for a better qubit is a major project of researchers around the world, who are trying different materials and methods in their search.

In a study published in Progress in Quantum Electronics, researchers from the FAMU-FSU College of Engineering explored an unconventional and promising approach to building qubits by using quantum fluids and solids.

Their article examined how electrons trapped just above the surfaces of ultraclean quantum fluids and solids such as and solid neon offer a combination of chip-level control and ultra-clean, defect-free environments, presenting a promising path toward scalable, high-fidelity qubits that could overcome key limitations of existing quantum technologies.