Menu

Blog

Archive for the ‘particle physics’ category: Page 7

Jun 12, 2021

New Chemistry for Cleaner Combustion Engines – From New Clues to the Origins of the Universe

Posted by in categories: chemistry, particle physics

In a decade-long quest, scientists at Berkeley Lab, the University of Hawaii, and Florida International University uncover new clues to the origins of the universe – and land new chemistry for cleaner combustion engines.

For nearly half a century, astrophysicists and organic chemists have been on the hunt for the origins of C6H6, the benzene ring – an elegant, hexagonal molecule comprised of 6 carbon and 6 hydrogen atoms.

Astrophysicists say that the benzene ring could be the fundamental building block of polycyclic aromatic hydrocarbons or PAHs, the most basic materials formed from the explosion of dying, carbon-rich stars. That swirling mass of matter would eventually give shape to the earliest forms of carbon – precursors to molecules some scientists say are connected to the synthesis of the earliest forms of life on Earth.

Continue reading “New Chemistry for Cleaner Combustion Engines – From New Clues to the Origins of the Universe” »

Jun 12, 2021

Quantum memory crystals are a step towards a futuristic internet

Posted by in categories: computing, internet, particle physics, quantum physics

A secure quantum internet is one step closer thanks to a quantum memory made from a crystal, which could form a crucial part of a device able to transmit entangled photons over a distance of 5 kilometres. Crucially, it is entirely compatible with existing communication networks, making it suitable for real-world use.

There has long been a vision of a quantum version of the internet, which would allow quantum computers to communicate across long distances by exchanging particles of light called photons that have been linked together with quantum entanglement, allowing them to transmit quantum states.

The problem is that photons get lost when they are transmitted through long lengths of fibre-optic cable. For normal photons, this isn’t an issue, because networking equipment can simply measure and retransmit them after a certain distance, which is how normal fibre data connections work. But for entangled photons, any attempt to measure or amplify them changes their state.

Continue reading “Quantum memory crystals are a step towards a futuristic internet” »

Jun 12, 2021

Neutrino Telescopes Launch New Era of Astronomy

Posted by in categories: particle physics, space

The detection of energetic neutrino particles from outside the solar system has launched a new era of astronomy that could allow scientists to probe the mysteries of cosmic rays and other phenomena.

Jun 11, 2021

Researchers observe sound-light pulses in 2D materials for the first time

Posted by in categories: computing, engineering, particle physics, quantum physics

Using an ultrafast transmission electron microscope, researchers from the Technion—Israel Institute of Technology have, for the first time, recorded the propagation of combined sound and light waves in atomically thin materials.

The experiments were performed in the Robert and Ruth Magid Electron Beam Quantum Dynamics Laboratory headed by Professor Ido Kaminer, of the Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering and the Solid State Institute.

Continue reading “Researchers observe sound-light pulses in 2D materials for the first time” »

Jun 9, 2021

MIT Engineers Have Discovered a Completely New Way of Generating Electricity

Posted by in categories: nanotechnology, particle physics

MIT engineers have discovered a way to generate electricity using tiny carbon particles that can create an electric current simply by interacting with an organic solvent in which they’re floating. The particles are made from crushed carbon nanotubes (blue) coated with a Teflon-like polymer (green). Credit: Jose-Luis Olivares, MIT. Based on a figure courtesy of the researchers.

A new material made from carbon nanotubes can generate electricity by scavenging energy from its environment.

MIT engineers have discovered a new way of generating electricity using tiny carbon particles that can create a current simply by interacting with liquid surrounding them.

Continue reading “MIT Engineers Have Discovered a Completely New Way of Generating Electricity” »

Jun 8, 2021

Subatomic particle seen changing to antiparticle and back

Posted by in category: particle physics

Physicists have proved that a subatomic particle can switch into its antiparticle alter-ego and back again, in a new discovery revealed today.

The extraordinarily precise measurement was made by UK researchers using the Large Hadron Collider beauty (LHCb) experiment at CERN.

It has provided the first evidence that mesons can change into their antiparticle and back again.

Jun 7, 2021

Stars Made of Antimatter Might Be Lurking in the Universe

Posted by in categories: particle physics, space

Circumstantial evidence could point to a mind-blowing solution to an antimatter mystery—or to the need for better space-based particle physics experiments.

Jun 7, 2021

A framework to simulate the same physics using two different Hamiltonians

Posted by in categories: particle physics, quantum physics

Researchers at Okinawa Institute of Science and Technology Graduate University in Japan have recently been investigating situations in which two distinct Hamiltonians could be used to simulate the same physical phenomena. A Hamiltonian is a function or model used to describe a dynamic system, such as the motion of particles.

In a paper published in Physical Review Letters, the researchers introduced a framework that could prove useful for simulating the same physics with two distinct Hamiltonians. In addition, they provide an example of an analog simulation and show how one could build an alternative version of a digital quantum simulator.

“The idea came about when I was looking at the dynamical generation of entanglement in spin chains,” Karol Gietka, one of the researchers who carried out the study, told Phys.org. “I noticed that the behavior of entanglement as a function of time in a certain model very much resembles entanglement behavior in the paradigmatic one-axis twisting model. Initially, I thought that one could map one system onto another one, but it was not possible as the Hamiltonians of the two systems were very different, which really confused me.”

Jun 7, 2021

An atom chip interferometer that could detect quantum gravity

Posted by in categories: computing, particle physics, quantum physics

Physicists in Israel have created a quantum interferometer on an atom chip. This device can be used to explore the fundamentals of quantum theory by studying the interference pattern between two beams of atoms. University of Groningen physicist, Anupam Mazumdar, describes how the device could be adapted to use mesoscopic particles instead of atoms. This modification would allow for expanded applications. A description of the device, and theoretical considerations concerning its application by Mazumdar, were published on 28 May in the journal Science Advances.

The device, created by scientists from the Ben-Gurion University of the Negev, is a so-called Stern Gerlach interferometer, which was first proposed 100 years ago by German physicists Otto Stern and Walter Gerlach. Their original aim of creating an interferometer with freely propagating atoms exposed to gradients from macroscopic magnets has not been practically realized until now. “Such experiments have been done using photons, but never with atoms,” explains Anupam Mazumdar, Professor of Theoretical Physics at the University of Groningen and one of the co-authors of the article in Science Advances.

The Israeli scientists, led by Professor Ron Folman, created an interferometer on an , which can confine and/or manipulate atoms. A beam of rubidium atoms is levitated over the chip using magnets. Magnetic gradients are used to split the beam according to the spin values of the individual atoms. Spin is a magnetic moment that can have two values, either up or down. The spin-up and spin-down atoms are separated by a magnetic gradient. Subsequently, the two divergent beams are brought together again and recombined. The spin values are then measured, and an interference pattern is formed. Spin is a quantum phenomenon, and throughout this interferometer, the opposing spins are entangled. This makes the interferometer sensitive to other quantum phenomena.

Jun 7, 2021

A new material made from carbon nanotubes can generate electricity

Posted by in categories: chemistry, nanotechnology, particle physics, robotics/AI

MIT engineers have discovered a new way of generating electricity using tiny carbon particles that can create a current simply by interacting with liquid surrounding them.

The liquid, an , draws electrons out of the particles, generating a current that could be used to drive or to power micro-or nanoscale robots, the researchers say.

“This mechanism is new, and this way of generating is completely new,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. “This technology is intriguing because all you have to do is flow a solvent through a bed of these particles. This allows you to do electrochemistry, but with no wires.”

Page 7 of 270First4567891011Last