Toggle light / dark theme

ALICE solves mystery of light-nuclei survival

Observations of the formation of light-nuclei from high-energy collisions may help in the hunt for dark matter.

Particle collisions at the Large Hadron Collider (LHC) can reach temperatures over one hundred thousand times hotter than at the center of the sun. Yet, somehow, light atomic nuclei and their antimatter counterparts emerge from this scorching environment unscathed, even though the bonds holding the nuclei together would normally be expected to break at a much lower temperature.

Physicists have puzzled for decades over how this is possible, but now the ALICE collaboration has provided experimental evidence of how it happens, with its results published today in Nature.

An old jeweler’s trick could unlock next-generation nuclear clocks

In 2008, a team of UCLA-led scientists proposed a scheme to use a laser to excite the nucleus of thorium atoms to realize extremely accurate, portable clocks. Last year, they realized this longstanding goal by bombarding thorium atoms embedded in specialized fluoride crystals with a laser. Now, they have found a way to dramatically simplify and strengthen the process by replacing the specialized crystals with thorium electroplated onto steel.

They observe, for the first time, that laser excitation of the thorium nucleus in this system leads to a measurable electric current, which can be used to miniaturize the nuclear clock. The advance is needed for smaller, more efficient atomic clocks, which have long been sought to improve navigation, GPS, power grids, and communications. It will also allow for some of the tightest tests ever of fundamental physics.

The rhythm of swarms: Tunable particles synchronize movement like living organisms

A collaboration between the University of Konstanz and Forschungszentrum Jülich has achieved the first fully tunable experimental realization of a long predicted “swarmalator” system. The study, published in Nature Communications, shows how tiny, self-propelled particles can simultaneously coordinate their motion and synchronize their internal rhythms—a behavior reminiscent of flashing fireflies, Japanese tree frogs or schooling fish.

The results underline how collective dynamics can arise from simple interactions, without overarching leadership or control. Possible applications include autonomous robotic swarms.

Swarmalators—short for swarming oscillators—are systems in which each individual not only moves but also oscillates, with motion and rhythm influencing one another.

Theoretical results could lead to faster, more secure quantum technology

University of Iowa researchers have discovered a method to “purify” photons, an advance that could make optical quantum technologies more efficient and more secure.

The work is published in the journal Optica Quantum.

The researchers investigated two nagging challenges to creating a steady stream of single photons, the gold standard method for realizing photonic quantum computers and secure communication networks. One obstacle is called laser scatter, which occurs when a laser beam is directed at an atom, causing it to emit a photon, which is a single unit of light. While effective, the technique can yield extra, redundant photons, which hampers the optical circuit’s efficiency, much like a wayward current in an electrical circuit.

LHC delivers a record number of particle collisions in 2025

All experiments broke records in the final full operating year of the third run of the LHC.

After a few final laps around the ring, the beams of the Large Hadron Collider (LHC) were paused at 6.00 a.m. on Monday, 8 December for the usual year-end technical stop. Launched on 5 May, the LHC’s 11th year-long run of high-energy physics broke a new record for integrated luminosity by delivering 125 fb-1 to both the ATLAS and the CMS experiments. Over the full lifetime of the LHC, ATLAS and CMS have now each delivered an integrated luminosity of 500 fb-1, equating to approximately 50 million billion particle collisions.

All four LHC experiments performed extremely well throughout the 2025 proton run, detecting more collisions than in any previous year and reporting data-taking efficiencies of more than 90%. LHCb continued to benefit from the significant upgrades that were completed in 2023, further increasing its recorded luminosity to a new record of 11.8 fb-1 in 2025.

Mini-vortices in nanopores accelerate ion transport for faster supercapacitor charging

Tiny cavities in energy storage devices form small vortices that help with charging, according to a research team led by TU Darmstadt. This previously unknown phenomenon could advance the development of faster storage devices.

Solar and wind are the energy sources of the future, but they are subject to significant natural fluctuations. Storage solutions are therefore particularly important for a successful energy transition. Rechargeable batteries achieve very high energy densities by storing energy chemically. However, this high energy density comes at the price of long charging times and a dependence on precious raw materials such as cobalt.

In contrast to rechargeable batteries, so-called supercapacitors store energy in electric double layers: a voltage is applied between two electrodes. They are immersed in a liquid in which tiny charged particles, ions, float. The positive and negative ions move in opposite directions and accumulate in charged, nanometer-thick layers, the electric double layers, on the surfaces of the electrodes. In order to provide as much surface area as possible for the accumulation of ions, supercapacitors use porous electrodes that have many tiny pores, like a sponge.

New nanomagnet production process improves efficiency and cuts costs

Researchers at HZDR have partnered with the Norwegian University of Science and Technology in Trondheim, and the Institute of Nuclear Physics in the Polish Academy of Sciences to develop a method that facilitates the manufacture of particularly efficient magnetic nanomaterials in a relatively simple process based on inexpensive raw materials.

Using a highly focused ion beam, they imprint magnetic nanostrips consisting of tiny, vertically aligned nanomagnets onto the materials. As the researchers have reported in the journal Advanced Functional Materials, this geometry makes the material highly sensitive to external magnetic fields and current pulses.

Nanomagnets play a key role in modern information technologies. They facilitate fast data storage, precise magnetic sensors, novel developments in spintronics, and, in the future, quantum computing. The foundations of all these applications are functional materials with particular magnetic structures that can be customized on the nanoscale and precisely controlled.

Student researcher leads discovery of fastest gamma-ray burst ever recorded

Sarah Dalessi, a fifth-year student in the College of Science at The University of Alabama in Huntsville (UAH), a part of The University of Alabama System, is the lead author of a paper published in The Astrophysical Journal detailing the discovery of the fastest gamma-ray burst (GRB) ever recorded.

GRB 230307A is a gamma-ray burst in the ultrarelativistic category, meaning the velocity of the GRB’s jet, a focused beam of high-energy particles and photons, came within 99.99998% of the speed of light—186,000 miles per second—making it the fastest GRB ever observed. The observation was made possible with data from the Fermi Gamma-ray Burst Monitor, one of two instruments on NASA’s Fermi Gamma-ray Space Telescope.

“The Lorentz factor is the measure of speed of the jet here, and 1,600 is the highest we ever measured,” explains Dr. Peter Veres, an assistant professor who works in the UAH Center for Space Plasma and Aeronomic Research (CSPAR) and is co-author on the study.

From light to logic: Ultrafast quantum switching in 2D materials

Scientists from the Indian Institute of Technology Bombay have found a way to use light to control and read tiny quantum states inside atom-thin materials. The simple technique could pave the way for computers that are dramatically faster and consume far less power than today’s electronics.

The materials studied are just one atom thick—far thinner than a human hair—and are known as two-dimensional (2D) semiconductors. Inside these materials, electrons can sit in one of two distinct quantum states, called valleys. These valleys, named K and K′, can be thought of as two different “locations” that an electron can choose between. Because there are two options, researchers have long imagined using them like the 0 and 1 of digital computing, but on a quantum level. This idea is the foundation of a rapidly growing research field called valleytronics.

However, being able to reliably control which valley electrons occupy—and to switch between them quickly and on demand—has been a major challenge. “Previous methods required complicated experimental setups with carefully tuned circularly polarized lasers and often multiple laser pulses, and they only worked under specific conditions,” said Prof. Gopal Dixit.

CERN upbeat as China halts particle accelerator mega-project

The chief of the CERN physics laboratory says China’s decision to pause its major particle accelerator project presents an “opportunity” to ensure Europe’s rival plan goes ahead.

Ten years ago, China announced its intention to build the Circular Electron Positron Collider (CEPC), which at 100 kilometers (62 miles) long would be the world’s largest particle accelerator.

But Beijing recently put the project on ice, CERN’s director-general Fabiola Gianotti told a small group of journalists at a recent briefing.

/* */