Toggle light / dark theme

Researchers have found that a two-dimensional carbon material is tougher than graphene and resists cracking—even the strongest crack under pressure, a problem materials scientists have long been grappling with. For instance, carbon-derived materials like graphene are among the strongest on Earth, but once established, cracks propagate rapidly through them, making them prone to sudden fracture.

A new carbon material known as monolayer amorphous carbon (MAC) however, is both strong and tough. In fact, MAC—which was recently synthesized by the group of Barbaros Özyilmaz at the National University of Singapore (NUS)—is eight times tougher than graphene, according to a new study from Rice University scientists and collaborators, published in the journal Matter.

Like graphene, MAC is also a 2D or single atom-thick material. But unlike graphene where atoms are arranged in an ordered (crystalline) , MAC is a that incorporates both crystalline and amorphous regions. It is this composite structure that gives MAC its characteristic toughness, suggesting that a composite design approach could be a productive way to make 2D materials less brittle.

When atoms collide, their exact structure—for example, the number of electrons they have or even the quantum spin of their nuclei—has a lot to say about how they bounce off each other. This is especially true for atoms cooled to near-zero Kelvin, where quantum mechanical effects give rise to unexpected phenomena. Collisions of these cold atoms can sometimes be caused by incoming laser light, resulting in the colliding atom-pair forming a short-lived molecular state before disassociating and releasing an enormous amount of energy.

These so-called light-assisted collisions, which can happen very quickly, impact a broad range of quantum science applications, yet many details of the underlying mechanisms are not well understood.

In a new study published in Physical Review Letters, JILA Fellow and University of Colorado Boulder physics professor Cindy Regal, along with former JILA Associate Fellow Jose D’Incao (currently an assistant professor of physics at the University of Massachusetts, Boston) and their teams developed new experimental and theoretical techniques for studying the rates at which light-assisted collisions occur in the presence of small atomic energy splittings.

Scientists are racing to develop new materials for quantum technologies in computing and sensing for ultraprecise measurements. For these future technologies to transition from the laboratory to real-world applications, a much deeper understanding is needed of the behavior near surfaces, especially those at interfaces between materials.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have unveiled a new technique that could help advance the development of quantum technology. Their innovation, surface-sensitive spintronic (SSTS), provides an unprecedented look at how behave at interfaces.

The work is published in the journal Science Advances.

Atomic nuclei exhibit multiple energy scales simultaneously—ranging from hundreds down to fractions of a megaelectronvolt. A new study demonstrates that these drastically different scales can be explained through calculations based on the strong nuclear force. The research also predicts that the atomic nucleus neon-30 exhibits several coexisting shapes.

“This discovery is incredibly important for understanding the stability limits of visible matter and how they can be anchored in our theory of the strong force,” says Christian Forssén, professor at the Department of Physics at Chalmers University of Technology.

Together with Andreas Ekström, professor at the same department, they have been part of the research group that has now published their findings in Physical Review X. In addition to Chalmers, the researchers behind the study are active at Oak Ridge National Laboratory and the University of Tennessee in the United States.

Researchers have announced results from a new search at the European X-ray Free Electron Laser (European XFEL) Facility at Hamburg for a hypothetical particle that may make up the dark matter of the universe. The experiment is described in a study published in Physical Review Letters.

This experiment looks for axions, a particle which was proposed to solve a major problem in : why neutrons, although composed of smaller charged particles called quarks, do not possess an . To explain this, it was suggested that axions, tiny and incredibly light particles, can “cancel out” this imbalance. If observed, this process would provide direct evidence for new physics beyond the Standard Model.

Additionally, axions turn out to be a natural candidate for dark matter, the mysterious substance that constitutes most of the structure of the universe.

When it comes to layered quantum materials, current understanding only scratches the surface; so demonstrates a new study from the Paul Scherrer Institute PSI. Using advanced X-ray spectroscopy at the Swiss Light Source SLS, researchers uncovered magnetic phenomena driven by unexpected interactions between the layers of a kagome ferromagnet made from iron and tin. This discovery challenges assumptions about layered alloys of common metals, providing a starting point for developing new magnetoelectric devices and rare-earth-free motors.

The research is published in the journal Nature Communications.

Patterns are everything. With , it’s not just what they’re made of but how their atoms or molecules are organized that gives rise to the exotic properties that excite researchers with their promise for future technologies.

Many objects that we normally deal with in quantum physics are only visible with special microscopes—individual molecules or atoms, for example. However, the quantum objects that Elena Redchenko works with at the Institute for Atomic and Subatomic Physics at TU Wien can even be seen with the naked eye (with a little effort): They are hundreds of micrometers in size. Still tiny by human standards but gigantic in terms of quantum physics.

Those huge quantum objects are —structures in which electric current flows at low temperatures without any resistance. In contrast to atoms, which have fixed properties, determined by nature, these artificial structures are extremely customizable and allow scientists to study different physical phenomena in a controlled manner. They can be seen as “artificial atoms,” whose physical properties can be adjusted at will.

By coupling them, a system was created that can be used to store and retrieve light—an important prerequisite for further quantum experiments. This experiment was carried out in the group of Johannes Fink at ISTA, with theoretical collaboration from Stefan Rotter at the Institute for Theoretical Physics at TU Wien. The results have now been published in the journal Physical Review Letters.

“ tabindex=”0” quantum computing and secure communications. Scientists have optimized materials and processes, making these detectors more efficient than ever.

Revolutionizing Electronics with Photon Detection

Light detection plays a crucial role in modern technology, from high-speed communication to quantum computing and sensing. At the heart of these systems are photon detectors, which identify and measure individual light particles (photons). One highly effective type is the superconducting nanowire single-photon detector (SNSPD). These detectors use ultra-thin superconducting wires that instantly switch from a superconducting state to a resistive state when struck by a photon, enabling extremely fast detection.

A neutrino of record-breaking energy — 220 PeV — has been detected by the underwater KM3NeT telescope, marking a pivotal moment in astrophysics.

This tiny but powerful particle, born from the universe’s most extreme events, provides fresh clues about cosmic accelerators. While its exact origin remains unknown, scientists believe it could be the first detected cosmogenic neutrino. The discovery fuels new momentum for multi-messenger astronomy, with future observations expected to shed light on the deepest mysteries of the cosmos.

Researchers found for the first time evidence that even microquasars containing a low-mass star are efficient particle accelerators, which leads to a significant impact on the interpretation of the abundance of gamma rays in the universe.

Our home planet is bombarded with particles from outer space all the time. And while we are mostly familiar with the rocky meteorites originating from within our solar system that create fascinating shooting stars in the night sky, it’s the smallest particles that help scientists to understand the nature of the universe. Subatomic particles such as electrons or protons arriving from interstellar space and beyond are one of the fastest particles known in the universe and known as cosmic rays.

The origins and the acceleration mechanisms of the most energetic of these cosmic particles remains one of the biggest mysteries in astrophysics. Fast-moving matter outflows (or “jets”) launched from black holes would be an ideal site for particle acceleration, but the details on how and under which conditions acceleration processes can occur are unclear. The most powerful jets inside our Galaxy occur in microquasars: systems composed by a stellar-mass black hole and a “normal” star. The pair orbit each other, and, once they are close enough, the black hole starts to slowly swallow its companion. As a consequence of this, jets are launched from the region close to the black hole.