Toggle light / dark theme

Did you know that the camera sensor in your smartphone could help unlock the secrets of antimatter? The AEgIS collaboration, led by Professor Christoph Hugenschmidt’s team from the research neutron source FRM II at the Technical University of Munich (TUM), has developed a detector using modified mobile camera sensors to image, in real time, the points where antimatter annihilates with matter.

This new device, described in a paper published in Science Advances, can pinpoint antiproton annihilations with a resolution of about 0.6 micrometers, a 35-fold improvement over previous real-time methods.

AEgIS and other experiments at CERN’s Antimatter Factory, such as ALPHA and GBAR, are on a mission to measure the free-fall of antihydrogen within Earth’s gravitational field with high precision, each using a different technique. AEgIS’s approach involves producing a horizontal beam of antihydrogen and measuring its vertical displacement using a device called a moiré deflectometer that reveals tiny deviations in motion and a detector that records the antihydrogen annihilation points.

Spintronics, an emerging field of technology, exploits the spin of electrons rather than their charge to process and store information. Spintronics could lead to faster, more power-efficient computers and memory devices. However, most spintronic systems require magnetic fields to control spin, which is challenging in ultracompact device integration due to unwanted interference between components. This new research provides a way to overcome this limitation.

As published in Materials Horizons, a research team led by the Singapore University of Technology and Design (SUTD) has introduced a novel method to control electron spin using only an . This could pave the way for the future development of ultra-compact, energy-efficient spintronic devices.

Their findings demonstrate how an emerging type of magnetic material, an altermagnetic bilayer, can host a novel mechanism called layer-spin locking, thus enabling all-electrical manipulation of spin currents at room temperature.

A team of researchers from University of Toronto Engineering has discovered hidden multi-dimensional side channels in existing quantum communication protocols.

The new side channels arise in quantum sources, which are the devices that generate the —typically photons—used to send secure messages. The finding could have important implications for quantum security.

“What makes quantum communication more secure than classical communication is that it makes use of a property of quantum mechanics known as conjugate states,” says Ph.D. student Amita Gnanapandithan, lead author on a paper published in Physical Review Letters.

Scientists have developed a more stable platform for Majorana zero modes, exotic particles that could revolutionize quantum computing. Using a carefully engineered three-site Kitaev chain composed of quantum dots and superconducting links, the team achieved greater separation of MZMs, boosting th

New experiments on thallium decay have helped determine the Sun formed over 10–20 million years, improving stellar nucleosynthesis models. Have you ever wondered how long it took our Sun to form in the stellar nursery where it was born? An international team of scientists has just brought us clos

These limits have kept solar tech stuck on rooftops and in fields. But a new type of cell, almost invisible to the eye, may soon change that. Transparent solar cells could turn windows, cars, and even skin into energy-harvesting surfaces.

Unlike the old models, these next-gen cells don’t clash with their surroundings. They blend in while still capturing sunlight. Some are so clear they reach up to 79% transparency. On average, most hover above 70%, allowing them to function without being noticed.

A major reason for this leap forward lies in materials only a few atoms thick. Known as 2D materials, they’re helping reshape what solar panels can do. One group, called transition metal dichalcogenides, absorbs light well and has band gaps that can be tuned.

Europe’s CERN laboratory said on Monday that a detailed analysis revealed no technical obstacles to building the world’s biggest particle collider, even as critics took issue with the “pharaonic” $17-billion project.

The Future Circular Collider (FCC) project is essential for ensuring that Europe maintains its global leadership in , CERN chief Fabiola Gianotti told AFP.

“There is real competition” from China in particular, she cautioned, hailing that the giant FCC “project is absolutely on the good track” and urging states to release the funding needed to move forward.

A recent study published in Physical Review Letters

<em> Physical Review Letters (PRL)</em> is a prestigious peer-reviewed scientific journal published by the American Physical Society. Launched in 1958, it is renowned for its swift publication of short reports on significant fundamental research in all fields of physics. PRL serves as a venue for researchers to quickly share groundbreaking and innovative findings that can potentially shift or enhance understanding in areas such as particle physics, quantum mechanics, relativity, and condensed matter physics. The journal is highly regarded in the scientific community for its rigorous peer review process and its focus on high-impact papers that often provide foundational insights within the field of physics.

An international team led by Rutgers University-New Brunswick researchers has merged two lab-synthesized materials into a synthetic quantum structure once thought impossible to exist and produced an exotic structure expected to provide insights that could lead to new materials at the core of quantum computing.

The work, described in a cover story in the journal Nano Letters, explains how four years of continuous experimentation led to a novel method to design and build a unique, tiny sandwich composed of distinct atomic layers.

One slice of the microscopic structure is made of dysprosium titanate, an inorganic compound used in nuclear reactors to trap and contain elusive magnetic monopole particles, while the other is composed of pyrochlore iridate, a new magnetic semimetal mainly used in today’s experimental research due to its distinctive electronic, topological and magnetic properties.