Toggle light / dark theme

Atomic neighborhoods in semiconductors provide new avenue for designing microelectronics

Inside the microchips powering the device you’re reading this on, the atoms have a hidden order all their own. A team led by Lawrence Berkeley National Laboratory (Berkeley Lab) and George Washington University has confirmed that atoms in semiconductors will arrange themselves in distinctive localized patterns that change the material’s electronic behavior.

The research, published in Science, may provide a foundation for designing specialized semiconductors for quantum-computing and optoelectronic devices for defense technologies.

On the , semiconductors are crystals made of different elements arranged in repeating . Many semiconductors are made primarily of one element with a few others added to the mix in small quantities. There aren’t enough of these trace additives to cause a throughout the material, but how these atoms are arranged next to their immediate neighbors has long been a mystery.

A new approach to magnify wave functions when imaging interacting ultracold atoms

The precise imaging of many-body systems, which are comprised of many interacting particles, can help to validate theoretical models and better understand how individual particles in these systems influence each other. Ultracold quantum gases, collections of atoms cooled to temperatures close to absolute zero, are among the most promising experimental platforms for studying many-body interactions.

To study these gases, most physicists use a technique known as –resolved imaging, which allows them to detect individual atoms and probe correlations in their behavior. Despite its advantages, this imaging method has a relatively low resolution, thus it fails to pick up a system’s subtler features.

Researchers at Heidelberg University recently devised a new strategy to magnify atomic wave functions, offering a mathematical description of the system’s , which could help to overcome the limitations of conventional single-atom imaging techniques.

Chip-scale cold atom experiments could unleash the power of quantum science in the field

Cold atom experiments are among the most powerful and precise ways of investigating and measuring the universe and exploring the quantum world. By trapping atoms and exploiting their quantum properties, scientists can discover new states of matter, sense even the faintest of signals, take ultra-precise measurements of time and gravity, and conduct quantum sensing and computing experiments.

Preserving particle physics data ensures future discoveries from collider experiments

A lot of the science from our accelerators is published long after collisions end, so storing experimental data for future physicists is crucial.

About a billion pairs of particles collide every second within the Large Hadron Collider (LHC). With them, a petabyte of collision data floods the detectors and pours through highly selective filters, known as trigger systems. Less than 0.001% of the data survives the process and reaches the CERN Data Center, to be copied onto long-term tape.

This archive now represents the largest scientific data set ever assembled. Yet, there may be more science in it than we can extract today, which makes data preservation essential for future physicists.

Topology reveals the hidden rules of amorphous materials: Softness arises from hierarchical structures

Why do glass and other amorphous materials deform more easily in some regions than in others? A research team from the University of Osaka, the National Institute of Advanced Industrial Science and Technology (AIST), Okayama University, and the University of Tokyo has uncovered the answer.

By applying a mathematical method known as persistent homology, the team demonstrated that these soft regions are governed by hidden hierarchical structures, where ordered and disordered coexist.

Crystalline solids, such as salt or ice, have atoms neatly arranged in repeating patterns. Amorphous materials, including glass, rubber, and certain plastics, lack this . However, they are not completely random: they possess medium-range order (MRO), subtle atomic patterns that extend over a few nanometers.

A new twist on Heisenberg’s uncertainty principle can sharpen quantum sensors

For almost a century, Heisenberg’s uncertainty principle has stood as one of the defining ideas of quantum physics: a particle’s position and momentum cannot be known at the same time with absolute precision. The more you know about one, the less you know about the other.

In a new study published in Science Advances, our team demonstrates how to work around this restriction, not by breaking physics but by reshaping uncertainty itself.

The result is a breakthrough in the science of measurement that could power a new generation of ultra-precise quantum sensors operating at the scale of atoms.

Scientist Connected Light And Matter a Century Before Quantum Physics

The Irish mathematician and physicist William Rowan Hamilton, who was born 220 years ago last month, is famous for carving some mathematical graffiti into Dublin’s Broome Bridge in 1843.

But in his lifetime, Hamilton’s reputation rested on work done in the 1820s and early 1830s, when he was still in his twenties. He developed new mathematical tools for studying light rays (or “geometric optics”) and the motion of objects (“mechanics”).

Intriguingly, Hamilton developed his mechanics using an analogy between the path of a light ray and that of a material particle.

Scientist Connected Light And Matter Century Before Quantum Physics

The Irish mathematician and physicist William Rowan Hamilton, who was born 220 years ago last month, is famous for carving some mathematical graffiti into Dublin’s Broome Bridge in 1843.

But in his lifetime, Hamilton’s reputation rested on work done in the 1820s and early 1830s, when he was still in his twenties. He developed new mathematical tools for studying light rays (or “geometric optics”) and the motion of objects (“mechanics”).

Intriguingly, Hamilton developed his mechanics using an analogy between the path of a light ray and that of a material particle.

/* */