Toggle light / dark theme

New research fuels the future of data storage: Predicting spin accumulation for faster, greener memory

Researchers from SANKEN (The Institute of Scientific and Industrial Research) at The University of Osaka have developed a new program, “postw90-spin,” that enables high-precision calculations of a novel performance indicator for the spin Hall effect, a phenomenon crucial for developing energy-efficient and high-speed next-generation magnetic memory devices.

This breakthrough addresses a long-standing challenge in spintronics research by providing a definitive measure of the spin Hall effect, overcoming ambiguities associated with traditional metrics. The research is published in the journal npj Spintronics.

The spin Hall effect, where many researchers recognize an generates a perpendicular , is key to devices. Previously, the spin Hall conductivity was used as a performance indicator. However, this metric is affected by how the spin current is defined, leading to inconsistencies.

Researchers Reveal How Bacteria Can Produce Gold

High concentrations of heavy metals, like copper and gold, are toxic for most living creatures. This is not the case for the bacterium C. metallidurans, which has found a way to extract valuable trace elements from a compound of heavy metals without poisoning itself. One interesting side-effect: the formation of tiny gold nuggets. A team of researchers from Martin Luther University Halle-Wittenberg (MLU), the Technical University of Munich (TUM) and the University of Adelaide in Australia has discovered the molecular processes that take place inside the bacteria. The group presented their findings in the renowned journal Metallomics published by the Royal Society of Chemistry.


A team of researchers reveal how bacterium C. metallidurans extracts valuable trace elements from a compound of heavy metals without poisoning itself, and thereby produces gold particles.

LUX-ZEPLIN experiment sets more stringent constraints on cosmic ray-boosted dark matter

Dark matter, a type of matter that does not emit, absorb, or reflect light, is predicted to account for most of the universe’s mass. While theoretical predictions hint at its abundance, detecting this elusive matter has so far proved to be very difficult, leaving its composition and origin a mystery.

One widely explored hypothesis is that consists of weakly interacting , or WIMPs for short. These particles are theorized to only interact with via gravity and potentially via weak nuclear forces.

The LUX-ZEPLIN (LZ) experiment is a large-scale research effort aimed at searching for signals associated with the presence of WIMPs using a sophisticated detector known as a dual-phase xenon time projection chamber. The researchers involved in the experiment recently published their most recent findings in a paper in Physical Review Letters, which places more stringent constraints on lighter dark matter particles that could have gained energy after colliding with cosmic rays.

Gold clusters mimic atomic spin properties for scalable quantum computing applications

The efficiency of quantum computers, sensors and other applications often relies on the properties of electrons, including how they are spinning. One of the most accurate systems for high-performance quantum applications relies on tapping into the spin properties of electrons of atoms trapped in a gas, but these systems are difficult to scale up for use in larger quantum devices like quantum computers.

Now, a team of researchers from Penn State and Colorado State has demonstrated how a gold cluster can mimic these gaseous, trapped atoms, allowing scientists to take advantage of these spin properties in a system that can be easily scaled up.

“For the first time, we show that have the same key spin properties as the current state-of-the-art methods for quantum information systems,” said Ken Knappenberger, department head and professor of chemistry in the Penn State Eberly College of Science and leader of the research team.

From cosmic strings to computer chips: Cooling rate triggers phase transitions in silicon surfaces

Solar cells and computer chips need silicon layers that are as perfect as possible. Every imperfection in the crystalline structure increases the risk of reduced efficiency or defective switching processes.

If you know how arrange themselves to form a on a thin surface, you gain fundamental insights into controlling crystal growth. To this end, an international research team analyzed the behavior of silicon that was flash-frozen. The study is published in the journal Physical Review Letters.

The results show that the speed of cooling has a major impact on the structure of silicon surfaces. The underlying mechanism may also have occurred during phase transitions in the early universe shortly after the Big Bang.

New method predicts promising 2D materials for next-generation electronics

Finding new materials with useful properties is a primary goal for materials scientists, and it’s central to improving technology. One exciting area of current research is 2D materials—super-thin substances made of just a few layers of atoms, which could power the next generation of electronic devices. In a new study, researchers at the University of Maryland Baltimore County (UMBC) developed a new way to predict 2D materials that might transform electronics. The results were published in Chemistry of Materials on July 7.

Picture a sheet of paper so thin that it’s only a few atoms thick, and that’s what 2D materials are like. One might think they would be fragile—but these materials can actually be incredibly strong or conduct electricity in unique ways. They’re held together by weak forces called van der Waals bonds, which allow materials to slightly deform without breaking under stress. Stacked layers of these 2D materials can slide past each other, further reducing brittleness.

The research team, led by Peng Yan, a UMBC Ph.D. candidate in chemistry, and Joseph Bennett, assistant professor of chemistry and biochemistry at UMBC, focused on a type of 2D material called van der Waals layered phosphochalcogenides. Some of these materials are ferroelectric, meaning they can hold an electric charge in a particular direction, and then the direction can be reversed on command—sort of like tiny, reversible batteries. Some are also magnetic, behaving similarly when a magnetic field is applied. That combination makes them ideal for advanced electronics like memory devices and sensors.

“Shocking” — 27 Million Tons of Nanoplastics Discovered in the North Atlantic

Tiny plastic particles fill the Atlantic in staggering amounts. Their effects are only beginning to be understood. A major new study by the Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University has revealed that approximately 27 million tons of plastic, in the form of ultra-f

Quantum internet moves closer as researchers teleport light-based information

Quantum teleportation is a fascinating process that involves transferring a particle’s quantum state to another distant location, without moving or detecting the particle itself. This process could be central to the realization of a so-called “quantum internet,” a version of the internet that enables the safe and instant transmission of quantum information between devices within the same network.

Quantum teleportation is far from a recent idea, as it was experimentally realized several times in the past. Nonetheless, most previous demonstrations utilized frequency conversion rather than natively operating in the telecom band.

Researchers at Nanjing University recently demonstrated the teleportation of a telecom-wavelength photonic qubit (i.e., a encoded in light at the same wavelengths supporting current communications) to a telecom quantum memory. Their paper, published in Physical Review Letters, could open new possibilities for the realization of scalable quantum networks and thus potentially a quantum internet.

Scientists create a “time crystal” using giant atoms, a concept long thought to be impossible

Recent studies have already used Rydberg vapors to detect radio‑frequency fields with extreme sensitivity.

Persistent, phase‑locked oscillations promise low‑phase‑noise signals useful for clock recovery, precision spectroscopy, and perhaps gravitational‑wave detection, where any self‑referencing oscillator could serve as a phase tag.

On the theory side, researchers now have a platform for mapping phase diagrams that include stationary, bistable, and time‑crystalline regimes.

/* */