Toggle light / dark theme

New method predicts promising 2D materials for next-generation electronics

Finding new materials with useful properties is a primary goal for materials scientists, and it’s central to improving technology. One exciting area of current research is 2D materials—super-thin substances made of just a few layers of atoms, which could power the next generation of electronic devices. In a new study, researchers at the University of Maryland Baltimore County (UMBC) developed a new way to predict 2D materials that might transform electronics. The results were published in Chemistry of Materials on July 7.

Picture a sheet of paper so thin that it’s only a few atoms thick, and that’s what 2D materials are like. One might think they would be fragile—but these materials can actually be incredibly strong or conduct electricity in unique ways. They’re held together by weak forces called van der Waals bonds, which allow materials to slightly deform without breaking under stress. Stacked layers of these 2D materials can slide past each other, further reducing brittleness.

The research team, led by Peng Yan, a UMBC Ph.D. candidate in chemistry, and Joseph Bennett, assistant professor of chemistry and biochemistry at UMBC, focused on a type of 2D material called van der Waals layered phosphochalcogenides. Some of these materials are ferroelectric, meaning they can hold an electric charge in a particular direction, and then the direction can be reversed on command—sort of like tiny, reversible batteries. Some are also magnetic, behaving similarly when a magnetic field is applied. That combination makes them ideal for advanced electronics like memory devices and sensors.

“Shocking” — 27 Million Tons of Nanoplastics Discovered in the North Atlantic

Tiny plastic particles fill the Atlantic in staggering amounts. Their effects are only beginning to be understood. A major new study by the Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University has revealed that approximately 27 million tons of plastic, in the form of ultra-f

Quantum internet moves closer as researchers teleport light-based information

Quantum teleportation is a fascinating process that involves transferring a particle’s quantum state to another distant location, without moving or detecting the particle itself. This process could be central to the realization of a so-called “quantum internet,” a version of the internet that enables the safe and instant transmission of quantum information between devices within the same network.

Quantum teleportation is far from a recent idea, as it was experimentally realized several times in the past. Nonetheless, most previous demonstrations utilized frequency conversion rather than natively operating in the telecom band.

Researchers at Nanjing University recently demonstrated the teleportation of a telecom-wavelength photonic qubit (i.e., a encoded in light at the same wavelengths supporting current communications) to a telecom quantum memory. Their paper, published in Physical Review Letters, could open new possibilities for the realization of scalable quantum networks and thus potentially a quantum internet.

Scientists create a “time crystal” using giant atoms, a concept long thought to be impossible

Recent studies have already used Rydberg vapors to detect radio‑frequency fields with extreme sensitivity.

Persistent, phase‑locked oscillations promise low‑phase‑noise signals useful for clock recovery, precision spectroscopy, and perhaps gravitational‑wave detection, where any self‑referencing oscillator could serve as a phase tag.

On the theory side, researchers now have a platform for mapping phase diagrams that include stationary, bistable, and time‑crystalline regimes.

Sensing with 2D Materials

After the successful separation of a monolayer of carbon atoms with honeycomb lattice known as graphene in 2004, a large group of 2D materials known as TMDCs and MXenes were discovered and studied. The realm of 2D materials and their heterostructures has created new opportunities for the development of various types of advanced rigid, flexible and stretchable biosensors, and chemical, optoelectronic and electrical sensors due to their unique and versatile electrical, chemical, mechanical and optical properties. The high surface to volume ratio and quantum confinement in 2D materials make them strong candidates for the development of sensors with improved sensitivity and performance. This group of atomically thin material also offer mechanical flexibility and limited stretchability harvested towards making flexible and stretchable sensors that can be used at the interface with soft tissues and in soft robotics. However, challenges remain in fully realizing their potential in practical applications.

The aim of this collection is to highlight the current progress in the research of 2D materials, focusing on their integration into sensing technologies. We seek to provide a comprehensive overview of the advancements made in this area while addressing the challenges faced in developing practical applications.

First physics results from the sPHENIX particle detector

The sPHENIX particle detector, the newest experiment at the Relativistic Heavy Ion Collider (RHIC) at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, has released its first physics results: precision measurements of the number and energy density of thousands of particles streaming from collisions of near-light-speed gold ions.

As described in two papers recently accepted for publication in Physical Review C and the Journal of High Energy Physics, these measurements lay the foundation for the ’s detailed exploration of the quark–gluon plasma (QGP), a unique state of matter that existed just microseconds after the Big Bang some 14 billion years ago. Both studies are available on the arXiv preprint server.

The new measurements reveal that the more head-on the nuclear smashups are, the more charged particles they produce and the more total energy those firework-like sprays of particles carry. That matches nicely with results from other detectors that have tracked QGP-generating collisions at RHIC since 2000, confirming that the new detector is performing as promised.

A new way to wobble: Scientists uncover mechanism that causes formation of planets

Instead of a tempest in a teapot, imagine the cosmos in a canister. Scientists have performed experiments using nested, spinning cylinders to confirm that an uneven wobble in a ring of electrically conductive fluid like liquid metal or plasma causes particles on the inside of the ring to drift inward. Since revolving rings of plasma also occur around stars and black holes, these new findings imply that the wobbles can cause matter in those rings to fall toward the central mass and form planets.

The scientists found that the wobble could grow in a new, unexpected way. Researchers already knew that wobbles could grow from the interaction between plasma and magnetic fields in a gravitational field. But these new results show that wobbles can more easily arise in a region between two jets of fluid with different velocities, an area known as a free shear layer.

“This finding shows that the wobble might occur more often throughout the universe than we expected, potentially being responsible for the formation of more solar systems than once thought,” said Yin Wang, a staff research physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and lead author of the paper reporting the results in Physical Review Letters. “It’s an important insight into the formation of planets throughout the cosmos.”

How a triatomic molecule works off excess energy

A resonance effect can significantly affect how a three-atom molecule cools down when excited, RIKEN physicists have found. The study, published in Physical Review A, highlights the complexity of the relaxation dynamics of even simple molecules.

Small, energetic molecules in a vacuum—such as those in the upper atmosphere or —can either break apart or cool down by releasing their energy through emitting light.

“The energy-dissipation mechanism of molecules via is crucial to understanding the stability of hot, excited molecules,” says Toshiyuki Azuma of the RIKEN Atomic, Molecular & Optical Physics Laboratory. “It’s essential in in dilute environments such as Earth’s .”

/* */