Toggle light / dark theme

At first glance, it might seem obvious that atoms touch each other, especially when you consider the material world around us. From the objects we handle to the materials we utilize, everything indeed appears very solid. However, the question of whether atoms actually “touch” as we understand it on a human level is far more intricate than it might seem. In fact, the answer hinges on how we define “touch,” a concept that shifts significantly at the atomic scale.

At the human scale, “touch” generally refers to the meeting of well-defined surfaces. For instance, when you place a glass on a table, you might say the two objects are touching because their outer surfaces overlap. However, at the atomic scale, this notion of contact becomes much more ambiguous. An atom is neither a solid object nor an entity with a clear boundary. It consists of a central nucleus made up of protons and neutrons, surrounded by a cloud of constantly moving electrons. This unpredictable movement means the electron cloud does not create a fixed and defined surface.

To understand what contact means between atoms, one must look into the internal structure of these particles and the interactions occurring between their electrons. Each atom is made up of a central nucleus surrounded by an electron cloud, which isn’t located at a specific spot but occupies areas known as orbitals. These orbitals are regions of probability where it’s more or less likely to find an electron at any given time. Their shape and organization vary depending on the chemical element of the atom, giving each type of atom unique characteristics.

Tachyons, the hypothetical particles that travel faster than light, have long fascinated scientists and enthusiasts. In this video, we explore how the McGinty Equation (MEQ) serves as a groundbreaking tool in understanding these elusive particles. Delve into the world of quantum mechanics, fractal geometry, and gravity as we uncover the potential of tachyons to revolutionize science and technology. From their intriguing properties, such as imaginary mass and energy reduction at high speeds, to their implications for faster-than-light communication and interstellar exploration, this video is a journey into uncharted territories of physics.

We also discuss the quest to detect tachyons, innovative experimental methods, and the role of MEQ in guiding researchers. Could tachyons be the key to unlocking new dimensions, explaining dark matter and energy, or understanding the origins of the universe? Join us in this deep dive into the unknown and discover the potential future of tachyon research.

#Tachyons #McGintyEquation #QuantumMechanics #FractalGeometry #FasterThanLight #ImaginaryMass #QuantumPhysics #AdvancedPhysics #TachyonResearch #LightSpeedPhysics #QuantumFieldTheory #ScientificDiscovery #SpaceTime #InterstellarTravel #DarkMatter #DarkEnergy #FasterThanLightCommunication #PhysicsBreakthrough #CosmicMysteries #HypotheticalParticles

NASA has been monitoring a strange anomaly in Earth’s magnetic field: a giant region of lower magnetic intensity in the skies above the planet, stretching out between South America and southwest Africa.

This vast, developing phenomenon, called the South Atlantic Anomaly, has intrigued and concerned scientists for years, and perhaps none more so than NASA researchers.

The space agency’s satellites and spacecraft are particularly vulnerable to the weakened magnetic field strength within the anomaly, and the resulting exposure to charged particles from the Sun.

All solids have a crystal structure that shows the spatial arrangement of atoms, ions or molecules in the lattice. These crystal structures are often determined by a method known as X-ray diffraction technique (XRD).

These crystal structures play an import role in determining many physical properties such as the electronic band structure, cleavage and explains many of their physical and chemical properties.

This article aims to discuss an approach to identify these structures by various machine learning and deep learning methods. It demonstrates how supervised machine learning and deep learning approaches and help in determining various crystal structures of solids.

The 21st century faces an unprecedented energy challenge that demands innovative solutions. This video explores Zero Point Energy (ZPE), a groundbreaking concept rooted in quantum mechanics that promises limitless, clean, and sustainable power. Learn how the quantum vacuum—long considered empty—is teeming with virtual particles and untapped energy potential. From understanding the Casimir effect to leveraging advanced technologies like fractal energy collectors and quantum batteries, this video details how ZPE could revolutionize industries, mitigate climate change, and empower underserved communities. Dive into the science, challenges, and global implications of a ZPE-powered future.

#ZeroPointEnergy #CleanEnergy #QuantumVacuum #Sustainability #EnergyInnovation #ZPE #QuantumMechanics #RenewableEnergy #GreenTech #CasimirEffect #QuantumEnergy #EnergySustainability #ClimateSolutions #FractalEnergy #QuantumBatteries #AdvancedTechnology #LimitlessEnergy #Nanotechnology #FutureOfEnergy #CleanPower

With so much fascinating research going on in quantum science and technology, it’s hard to pick just a handful of highlights. Fun, but hard. Research on entanglement-based imaging and quantum error correction both appear in Physics World’s list of 2024’s top 10 breakthroughs, but beyond that, here are a few other achievements worth remembering as we head into 2025 – the International Year of Quantum Science and Technology.

Quantum sensing

In July, physicists at Germany’s Forschungszentrum Jülich and Korea’s IBS Center for Quantum Nanoscience (QNS) reported that they had fabricated a quantum sensor that can detect the electric and magnetic fields of individual atoms. The sensor consists of a molecule containing an unpaired electron (a molecular spin) that the physicists attached to the tip of a scanning-tunnelling microscope. They then used it to measure the magnetic and electric dipole fields emanating from a single iron atom and a silver dimer on a gold substrate.

Superradiance in optical cavities involves atoms emitting light collectively when interacting with cavity photons, a phenomenon not yet observed in free space due to synchronization challenges.

Researchers have used theoretical simulations to probe these effects under various conditions, revealing significant differences in behavior between cavity and free-space systems.

Superradiance in Optical Cavities.

Physicists uncovered a fascinating link between the Large Hadron Collider and quantum computing. They found that top quarks produced at the LHC exhibit a property called “magic,” essential for quantum computation.

This discovery could revolutionize our understanding of quantum mechanics and its applications, bridging the gap between quantum theory and particle physics.

Quantum Computing and the Power of “Magic”

The quantum entanglement of particles is now an established art. You take two or more unmeasured particles and correlate them in such a way that their properties blur and mirror each other. Measure one and the other’s corresponding properties lock into place, instantaneously, even when separated by a wide distance.

In new research, physicists have theorized a bold way to change it up by entangling two particles of very different kinds – a unit of light, or a photon, with a phonon, the quantum equivalent of a wave of sound.

Physicists Changlong Zhu, Claudiu Genes, and Birgit Stiller of the Max Planck Institute for the Science of Light in Germany have called their proposed new system optoacoustic entanglement.

Scientists use cutting-edge techniques to study rare atomic systems called hypernuclei shedding light on subatomic forces and neutron stars.

Scientists have made an important discovery in the world of particle physics by exploring hypernuclei — rare, short-lived atomic systems that include mysterious particles known as hyperons. Unlike protons and neutrons composed of “up” and “down” quarks, which make up the nuclei of ordinary atoms, hyperons contain at least one “strange” quark. These unusual particles could help unravel mysteries not only about the interactions between subatomic particles but also about the extreme conditions inside neutron stars.

“It is extremely important to understand what happens when a nucleus becomes a hypernucleus, which means when one nucleon is replaced by a hyperon,” Jean-Marc Richard, a professor at the University of Lyon, who was not involved in the study, said in an email.