Toggle light / dark theme

AI enhances the Higgs boson’s ‘charm’

The Higgs boson, discovered at the Large Hadron Collider (LHC) in 2012, plays a central role in the Standard Model of particle physics, endowing elementary particles such as quarks with mass through its interactions. The Higgs boson’s interaction with the heaviest “third-generation” quarks—top and bottom quarks—has been observed and found to be in line with the Standard Model.

But probing its interactions with lighter “second-generation” quarks, such as the quark, and the lightest “first-generation” quarks—the up and down quarks that make up the building blocks of atomic nuclei—remains a formidable challenge, leaving unanswered the question of whether or not the Higgs boson is responsible for generating the masses of the quarks that make up ordinary matter.

Researchers study the Higgs boson’s interactions by looking at how the particle decays into—or is produced with—other particles in high-energy proton–proton collisions at the LHC.

Invisible currents at the edge: Study shows how magnetic particles reveal hidden rule of nature

If you’ve ever watched a flock of birds move in perfect unison or seen ripples travel across a pond, you’ve witnessed nature’s remarkable ability to coordinate motion. Recently, a team of scientists and engineers at Rice University discovered a similar phenomenon on a microscopic scale, where tiny magnetic particles driven by rotating fields spontaneously move along the edges of clusters driven by invisible “edge currents” that follow the rules of an unexpected branch of physics.

The research is published in the journal Physical Review Research.

“When I saw the initial data—with streams of particles moving faster along the edges than in the middle—I said ‘these are edge flows’ and we got to work exploring this,” said corresponding author Evelyn Tang, assistant professor of physics and astronomy. “What’s very exciting is that we can explain their emergence using ideas from topological physics, a field that became prominent due to quantum computers and .”

Researchers uncover a mechanism enabling glasses to self-regulate their brittleness

Materials with self-adaptive mechanical responses have long been sought after in material science. Using computer simulations, researchers at the Tata Institute of Fundamental Research (TIFR), Hyderabad, now show how such adaptive behavior can emerge in active glasses, which are widely used as models for biological tissues.

The findings, published in the journal Nature Physics, provide new insights—ranging from how cells might regulate their glassiness to aiding in the design of new metamaterials.

Glasses (or amorphous solids) are materials whose components lack any particular ordering. Contrast this with a crystal, where atoms are arranged in neat, repeating patterns on a well-defined lattice. While crystals are ordered and nearly perfect, amorphous materials are defined by their disorder.

Bright Streak Appears Over US During Aurora Storm, Mystifying Skywatchers

On the night of Saturday 17 May, skywatchers across the US as far south as New Mexico were treated to a peculiar sight: a brilliant stream of whitish light, stretching across the sky.

That was a night for auroral activity, as Earth’s magnetic field was buffeted by an influx of particles ejected from the Sun several days earlier. Initially, explanations favored STEVE, the name given to the white-mauve streaks of light emitted by rivers of charged particles flowing through Earth’s ionosphere.

STEVE is not an aurora, but, like the auroral displays it often appears alongside, is also a product of space weather.

The US test fired its most powerful laser ever

Accomplishing this and other experimental feats does require some safeguards. ZEUS includes optical devices known as diffraction gratings that stretch out the initial infrared pulse over time. This ensures the initial power doesn’t get so intense that it begins tearing apart the air around it.

Another goal is to ultimately create beams of electrons with energies similar to those found in particle accelerators hundreds of feet longer than ZEUS at a fraction of both its size and operating costs. At only $16 million to construct, the University of Michigan previously described the machine as a “bargain.”

Years of construction, calibration, and expertise is showcased in an astoundingly short amount of time. ZEUS’ 2 petawatt firing lasted just 25 quintillionths of a second. But future experiments will make the most of these moments.

Chandra diagnoses cause of fracture in galactic ‘bone’

Astronomers have discovered a likely explanation for a fracture in a huge cosmic “bone” in the Milky Way galaxy, using NASA’s Chandra X-ray Observatory and radio telescopes.

The bone appears to have been struck by a fast-moving, rapidly spinning neutron star, or a pulsar. Neutron stars are the densest known stars and form from the collapse and explosion of massive stars. They often receive a powerful kick from these explosions, sending them away from the explosion’s location at high speeds.

Enormous structures resembling bones or snakes are found near the center of the galaxy. These elongated formations are seen in radio waves and are threaded by magnetic fields running parallel to them. The radio waves are caused by energized particles spiraling along the magnetic fields.

CASIMIR EFFECT II Creator Of Mysterious Force Carrier

CASIMIR EFFECT @SEVENTHQUANTUMACADEMY

This video will tell you the mysterious creator of force carrier particle particularly Graviton and then chronologically gluon, photon and boson. You will see delving into the string theory and quantum physics and dimensional physics that how this force was first created immediately after the first quantum vacuum fluctuation and the creation of Planck’s length and hence the Planck’s world. You will observe with tremendous astonishment that it is telling some other stories regarding birth of invisible universe which is the predecessor of the visible third dimensional universe we can see today. So to delve into this mysterious world, watch the full video with concentration and to get more subscribe SEVENTH QUANTUM ACADEMY and tap the bell icon to get notified when the new video gets published.

An ‘invisible order’ in glass shapes vibrations in the terahertz frequency range

Although glasses exhibit disordered atomic structures, X-ray and neutron scattering reveal a subtle periodicity. Researchers at the University of Tsukuba have demonstrated that this hidden periodicity—referred to as “invisible order”—plays a critical role in determining vibrational fluctuations in the terahertz (THz) frequency range, which significantly influence the physical properties of glass.

The research is published in the journal Scientific Reports.

At first glance, glass appears to be a random network of atoms. However, X-ray and neutron beam analysis reveals a faint but consistent periodic feature known as the first sharp diffraction peak (FSDP).

Scientists map activation of prostaglandin E₂ receptor EP1 at atomic level

Prostaglandin E2 (PGE2), a bioactive lipid derived from arachidonic acid, mediates a broad range of physiological processes through four G protein-coupled receptor (GPCR) subtypes: EP1–EP4. While the high-resolution structures of EP2, EP3 and EP4 have been resolved, EP1 remained structurally uncharacterized due to its intrinsic instability, hindering detailed understanding of its Gq-mediated signaling.

In a study published in Proceedings of the National Academy of Sciences, a research team led by Eric H. Xu (Xu Huaqiang) and Xu Youwei from the Shanghai Institute of Materia Medica of the Chinese Academy of Sciences reported the cryo– (cryo-EM) structure of the human EP1 receptor in complexes with PGE2 and the heterotrimeric Gq protein, completed structural atlas of EP receptor family, and revealed EP1-specific mechanisms of ligand recognition and signal transduction.

To overcome the instability of EP1, the researchers employed a multi-pronged engineering strategy, including BRIL fusion, truncation of flexible loops, incorporation of a mini-Gq chimera, and NanoBiT-assisted complex stabilization. They resolved the structure of the EP1–PGE2–Gq complex at 2.55 Å resolution using single-particle cryo-EM, enabling detailed analysis of both ligand binding and G protein coupling interfaces.