Toggle light / dark theme

Detecting strong-to-weak symmetry breaking might be impossible, study shows

When a system undergoes a transformation, yet an underlying physical property remains unchanged, this property is referred to as “symmetry.” Spontaneous symmetry breaking (SSB) occurs when a system breaks out of this symmetry when it is most stable or in its lowest-possible energy state.

Recently, physicists realized that a new type of SSB can occur in open quantum systems, systems driven by quantum mechanical effects that can exchange information, energy or particles with their surrounding environment. Specifically, they realized that the symmetry in these systems can be “strong” or “weak.”

A strong symmetry entails that both the open system and its surrounding environment individually obey the symmetry. In contrast, a weak symmetry takes place when the system and the environment only follow a symmetry when they are taken together.

Dislocations without crystals: Burgers vectors discovered in glass

For nearly a century, scientists have understood how crystalline materials—such as metals and semiconductors—bend without breaking. Their secret lies in tiny, line-like defects called dislocations, which move through an orderly atomic lattice and carry deformation with them.

At the heart of this theory is a geometric quantity known as the Burgers vector, experimentally observed for the first time in the 1950s, which precisely measures how much the lattice is distorted by a dislocation. This concept became one of the cornerstones of modern materials science.

Glasses, however, have always stood apart. From window glass and polymers to metallic glasses and many soft materials, glasses lack the regular atomic structure of crystals. Their particles are arranged randomly, frozen into disordered atomic configurations.

Physicists create ‘quantum wire’ where mass and energy flow without friction or loss

In physical systems, transport takes many forms, such as electric current through a wire, heat through metal, or even water through a pipe. Each of these flows can be described by how easily the underlying quantity—charge, energy, or mass—moves through a material.

Normally, collisions and friction lead to resistance causing these flows to slow down or fade away. But in a new experiment at TU Wien, scientists have observed a system where that doesn’t happen at all.

By confining thousands of rubidium atoms to move along a single line using magnetic and optical fields, they created an ultracold quantum gas in which energy and mass move with perfect efficiency. The results, now published in the journal Science, show that even after countless collisions, the flow remains stable and undiminished, thus revealing a kind of transport that defies the rules of ordinary matter.

New theory proposes that consciousness is the universe’s foundation, not atoms

Maria Strømme, a materials science professor at Uppsala University, outlines a new theoretical model in AIP Advances that begins with a central claim: consciousness is fundamental field, and time, space, and matter develop from it.

Her paper treats conscious experience not as a late add-on, but as the basic “stuff” that reality is made of. In that picture, your brain, your body, and even space and time grow out of a deeper kind of “mind” that fills the whole universe.

Most neuroscientists still ask, “How does the brain produce consciousness?”

New Research Shows How Entanglement Amplifies Light

Researchers discovered that when atoms interact and remain entangled with light, they emit stronger, more coordinated bursts of energy.

This breakthrough could lead to faster, more efficient quantum devices and improved control over light-matter systems.

Collective light behavior in cavity systems.

Rapid X-ray pulses enable 100-fold efficiency boost for photoionization

Speed matters. When an X-ray photon excites an atom or ion, making a core electron jump onto a higher energy level, a short-lived window of opportunity opens. For just a few femtoseconds, before an electron fills the void in the lower energy level, a second photon has the chance to be absorbed by another core electron, creating a doubly excited state.

Using 5,000 intense X-ray flashes per second, generated by the European XFEL, an international team of scientists has investigated such double core-hole states in highly ionized krypton, using photons that all had nearly the same energy or color.

For their experiments, scientists from European XFEL and the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg as well as six other institutions across Germany, Italy, Portugal, and the United States, used highly charged krypton, Kr26+, lacking all but ten of its electrons.

Finding information in the randomness of living matter

When describing collective properties of macroscopic physical systems, microscopic fluctuations are typically averaged out, leaving a description of the typical behavior of the systems. While this simplification has its advantages, it fails to capture the important role of fluctuations that can often influence the dynamics in dramatic manners, as the extreme examples of catastrophic events such as volcanic eruptions and financial market collapse reveal.

On the other hand, studying the dynamics of individual microscopic degrees of freedom comprehensively becomes too cumbersome even when considering systems of a moderate number of particles. To describe the interface between these opposite ends of the scale, stochastic field theories are commonly used to characterize the dynamics of complex systems and the effect of the microscopic fluctuations.

Due to their overwhelming complexity, predicting outcomes by analyzing these fluctuations in living or active matter systems is not possible using traditional methods of physics. Since these systems persistently consume energy, they exhibit dynamical traits that violate the laws of equilibrium thermodynamics, not unrelated to the arrow of time.

Can quantum computers help researchers learn about the inside of a neutron star?

A new paper published in Nature Communications could put scientists on the path to understanding one of the wildest, hottest, and most densely packed places in the universe: a neutron star.

Christine Muschik, a faculty member at the University of Waterloo Institute for Quantum Computing (IQC) and a research associate faculty member at Perimeter Institute is part of a U.S.–Canadian research group using a quantum computer to build on a theory of quantum chromodynamics that describes how different varieties of quarks and gluons (the most fundamental bits of nature) interact in nuclei.

To really understand the behavior of the quark-gluon plasma in extreme conditions like the beginning of the universe, or the inside of a neutron star, scientists need a map, a so-called “phase diagram” to describe the phase transitions in those conditions that are so extreme—so dense and complex—that classical computer simulations of the models will fail.

Electric control of ions and water enables switchable molecular stickiness on surfaces

What if a surface could instantly switch from sticky to slippery at the push of a button? By using electricity to control how ions and water structure at the solid liquid interface of self-assembled monolayers of aromatic molecules, researchers at National Taiwan University have created a molecular-scale adhesion switch that turns attraction on and off.

Why do some surfaces stick together while others repel each other? At scales far too small to see with the bare eye, this question is controlled by a complex interplay of intermolecular forces that arise when charged particles, called ions, and water organize themselves at the boundary between a solid and a liquid.

Understanding and controlling this behavior is essential for technologies ranging from lubricants and coatings to sensors and electronics.

Superconductivity for addressing global challenges

High‑energy physics has always been one of the main drivers of progress in superconducting science and technology. None of the flagship accelerators that have shaped modern particle physics could have succeeded without large‑scale superconducting systems. CERN continues to lead the efforts in this field. Its next accelerator, the High‑Luminosity LHC, relies on high-grade superconductors that were not available in industry before they were developed for high-energy physics. Tomorrow’s colliders will require a new generation of high‑temperature superconductors (HTS) to be able to realise their research potential with improved energy efficiency and long‑term sustainability.

Beyond the physics field, next‑generation superconductors have the potential to reshape key technological sectors. Their ability to transmit electricity without resistance, generate intense magnetic fields and operate efficiently at high temperatures makes them suitable for applications in fields as diverse as healthcare, mobility, computing, novel fusion reactors, zero‑emission transport and quantum technologies. This wide range of applications shows that advances driven by fundamental physics can generate broad societal impact far beyond the laboratory.

The Catalysing Impact – Superconductivity for Global Challenges event seeks to accelerate the transition from science to societal applications. By bringing together top-level researchers, industry leaders, policymakers and investors, the event provides a structured meeting point for technical expertise and strategic financing. Its purpose is not simply to present progress but to build bridges across sectors, disciplines and funding landscapes in order to move superconducting technologies from early demonstrations to impactful applications.

/* */