Toggle light / dark theme

Quantum computer simulates spontaneous symmetry breaking at zero temperature

For the first time, an international team of scientists has experimentally simulated spontaneous symmetry breaking (SSB) at zero temperature using a superconducting quantum processor. This achievement, which was accomplished with over 80% fidelity, represents a milestone for quantum computing and condensed matter physics.

The results are published in the journal Nature Communications.

The system began in a classical antiferromagnetic state, in which particles have spins that alternate between one direction and the opposite direction. It then evolved into a ferromagnetic quantum state, in which all particles have spins that point in the same direction and establish quantum correlations.

Leave a Comment

Lifeboat Foundation respects your privacy! Your email address will not be published.