Toggle light / dark theme

“Like Talking on the Telephone” — Quantum Breakthrough Lets Individual Atoms Chat Like Never Before

Scientists have linked nuclear spins inside silicon chips, marking a leap toward scalable quantum computers. Engineers at UNSW have achieved a major breakthrough in quantum computing by creating what are known as “quantum entangled states.” In this phenomenon, two particles become so strongly conne

In a first, scientists observe short-range order in semiconductors

Inside the microchips powering your devices, atoms aren’t just randomly scattered. They follow a hidden order that can change how semiconductors behave.

A team of researchers from the Lawrence Berkeley National Laboratory (Berkeley Lab) and George Washington University has, for the first time, observed these tiny patterns, called short-range order (SRO), directly in semiconductors.

This discovery is a game-changer, as understanding how atoms naturally arrange themselves could let researchers design materials with desirable electronic properties. Such control could revolutionize quantum computing, neuromorphic devices that mimic the brain, and advanced optical detectors.

The surprising new particle that could finally explain dark matter

Physicists are eyeing charged gravitinos—ultra-heavy, stable particles from supergravity theory—as possible Dark Matter candidates. Unlike axions or WIMPs, these particles carry electric charge but remain undetectable due to their scarcity. With detectors like JUNO and DUNE, researchers now have a chance to spot their unique signal, a breakthrough that could link particle physics with gravity.

Controlling Light Emission with Photonic Time Crystals

A material whose dielectric properties vary in time could produce exotic light-emission phenomena in a nearby atom, theorists predict.

Traditional photonic technologies rely on mirrors, lenses, and diffraction gratings to shape light as it travels through a medium. Recent advances in material science have opened a strikingly different route. Instead of sculpting material properties in space, researchers can now dynamically modulate them in time [1]. Such temporal modulation transforms a passive medium into an active one, as the act of modulation itself can inject or extract energy. Adding a temporal dimension to material design confronts long-standing notions of light–matter interactions and reveals phenomena with no static counterpart. Now Bumki Min of the Korea Advanced Institute of Science and Technology (KAIST) and his collaborators have exploited this capability to reshape the photonic density of states (DOS), which quantifies the number of available optical modes into which light can be emitted [2].

3D particle-in-cell simulations demonstrate first true steady state in turbulent plasma

Plasma is a state of matter that emerges when a gas is heated to sufficiently high temperatures, prompting some electrons to become free from atoms. This state of matter has been the focus of many astrophysical studies, as predictions suggest that it would be found in the proximity of various cosmological objects, including pulsars and black holes.

Previous research findings suggest that the environment around these celestial objects is turbulent, which essentially means that magnetic fields and electric fields within it fluctuate chaotically across many scales. These chaotic fluctuations would in turn influence the movements and acceleration of particles.

Researchers have been trying to reproduce the turbulent environment associated with the emergence of in space using numerical simulations. However, they were so far unable to realize a steady state in which a system’s properties no longer change over time, such as that one might observe in real cosmic systems.

Atomic neighborhoods in semiconductors provide new avenue for designing microelectronics

Inside the microchips powering the device you’re reading this on, the atoms have a hidden order all their own. A team led by Lawrence Berkeley National Laboratory (Berkeley Lab) and George Washington University has confirmed that atoms in semiconductors will arrange themselves in distinctive localized patterns that change the material’s electronic behavior.

The research, published in Science, may provide a foundation for designing specialized semiconductors for quantum-computing and optoelectronic devices for defense technologies.

On the , semiconductors are crystals made of different elements arranged in repeating . Many semiconductors are made primarily of one element with a few others added to the mix in small quantities. There aren’t enough of these trace additives to cause a throughout the material, but how these atoms are arranged next to their immediate neighbors has long been a mystery.

A new approach to magnify wave functions when imaging interacting ultracold atoms

The precise imaging of many-body systems, which are comprised of many interacting particles, can help to validate theoretical models and better understand how individual particles in these systems influence each other. Ultracold quantum gases, collections of atoms cooled to temperatures close to absolute zero, are among the most promising experimental platforms for studying many-body interactions.

To study these gases, most physicists use a technique known as –resolved imaging, which allows them to detect individual atoms and probe correlations in their behavior. Despite its advantages, this imaging method has a relatively low resolution, thus it fails to pick up a system’s subtler features.

Researchers at Heidelberg University recently devised a new strategy to magnify atomic wave functions, offering a mathematical description of the system’s , which could help to overcome the limitations of conventional single-atom imaging techniques.

Chip-scale cold atom experiments could unleash the power of quantum science in the field

Cold atom experiments are among the most powerful and precise ways of investigating and measuring the universe and exploring the quantum world. By trapping atoms and exploiting their quantum properties, scientists can discover new states of matter, sense even the faintest of signals, take ultra-precise measurements of time and gravity, and conduct quantum sensing and computing experiments.

/* */