Toggle light / dark theme

Physicists prove long-held theory light can be made from nothingness of vacuum

Scientists have demonstrated after decades of theorising how light interacts with vacuum, recreating a bizarre phenomenon predicted by quantum physics.

Oxford University physicists ran simulations to test how intense laser beams alter vacuum, a state once thought to be empty but predicted by quantum physics to be full of fleeting, temporary particle pairs.

Classical physics predicts that light beams pass through each other undisturbed. But quantum mechanics holds that even what we know as vacuum is always brimming with fleeting particles, which pop in and out of existence, causing light to be scattered.

Deciphering the behavior of heavy particles in the hottest matter in the universe

An international team of scientists has published a new report that moves toward a better understanding of the behavior of some of the heaviest particles in the universe under extreme conditions, which are similar to those just after the Big Bang.

The review article, published in the journal Physics Reports, is authored by physicists Juan M. Torres-Rincón, from the Institute of Cosmos Sciences at the University of Barcelona (ICCUB), Santosh K. Das, from the Indian Institute of Technology Goa (India), and Ralf Rapp, from Texas A&M University (United States).

The authors have published a comprehensive review that explores how particles containing (known as charm and bottom hadrons) interact in a hot, dense environment called hadronic matter. This environment is created in the last phase of high-energy collisions of atomic nuclei, such as those taking place at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC).

Two different time scales could increase quantum clock accuracy exponentially

How can the strange properties of quantum particles be exploited to perform extremely accurate measurements? This question is at the heart of the research field of quantum metrology. One example is the atomic clock, which uses the quantum properties of atoms to measure time much more accurately than would be possible with conventional clocks.

However, the fundamental laws of quantum physics always involve a certain degree of uncertainty. Some randomness or a certain amount of statistical noise has to be accepted. This results in fundamental limits to the accuracy that can be achieved. Until now, it seemed to be an immutable law that a clock twice as accurate requires at least twice as much energy.

Now a team of researchers from TU Wien, Chalmers University of Technology, Sweden, and the University of Malta has demonstrated that special tricks can be used to increase accuracy exponentially. The crucial point is using two different time scales—similar to how a clock has a second hand and a minute hand.

Record-breaking cosmic structure discovered in colossal galaxy cluster

Astronomers have discovered the largest known cloud of energetic particles surrounding a galaxy cluster—spanning nearly 20 million light-years. The finding challenges long-standing theories about how particles stay energized over time. Instead of being powered by nearby galaxies, this vast region seems to be energized by giant shockwaves and turbulence moving through the hot gas between galaxies.

‘Link-bots’ can move, explore, cooperate without sensing or computation

Coordinated behaviors like swarming—from ant colonies to schools of fish—are found everywhere in nature. Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have given a nod to nature with a next-generation robot system that’s capable of movement, exploration, transport and cooperation.

A study in Science Advances describing the new soft robotic system was co-led by L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, Physics, and Organismic and Evolutionary Biology in SEAS and the Faculty of Arts and Sciences, in collaboration with Professor Ho-Young Kim at Seoul National University. Their work paves new directions for future, low-power swarm robotics.

The new robots, called link-bots, are comprised of centimeter-scale, 3D-printed particles strung into V-shaped chains via notched links and are capable of coordinated, life-like movements without any embedded power or control systems. Each particle’s legs are tilted to allow the bot to self-propel when placed on a uniformly vibrating surface.

Ultrathin display technology shows dozens of images hidden in a single screen

From smartphones and TVs to credit cards, technologies that manipulate light are deeply embedded in our daily lives, many of which are based on holography. However, conventional holographic technologies have faced limitations, particularly in displaying multiple images on a single screen and in maintaining high-resolution image quality.

Recently, a research team led by Professor Junsuk Rho at POSTECH (Pohang University of Science and Technology) has developed a groundbreaking metasurface technology that can display up to 36 high-resolution images on a surface thinner than a human hair. This research has been published in Advanced Science.

This achievement is driven by a special nanostructure known as a metasurface. Hundreds of times thinner than a human hair, the metasurface is capable of precisely manipulating light as it passes through. The team fabricated nanometer-scale pillars using silicon nitride, a material known for its robustness and excellent optical transparency. These pillars, referred to as meta-atoms, allow for fine control of light on the metasurface.

How an atomic nucleus can have two different shapes with only slightly different energy levels

A team of researchers at the Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU) has discovered that cobalt-70 isotopes form different nuclear shapes when their energy levels differ only slightly. The findings, published in Nature Communications Physics, shed light on the dynamic, complex nature of exotic nuclear particles.

The team included Artemis Spyrou, professor of physics at the Facility for Rare Isotope Beams (FRIB) and in the MSU Department of Physics and Astronomy, Sean Liddick, associate professor of chemistry at FRIB and in the MSU Department of Chemistry and Experimental Nuclear Science Department head at FRIB, Alex Brown, professor of physics at FRIB, and Cade Dembski, former FRIB student research assistant. Dembski, now working on his Ph.D. at the University of Notre Dame, served as the paper’s lead author.

“When we first started this project, it was motivated by the astrophysical side of nuclear science research, instead of focusing on ,” Dembski said. “As we continued with our , though, we couldn’t quite understand all of the patterns we were seeing. It turned out the reason was due to some interesting nuclear structure effects that we were not expecting, and we ended up writing the paper about those effects.”

Out of the string theory swampland: New models may resolve problem that conflicts with dark energy

String theory has long been touted as physicists’ best candidate for describing the fundamental nature of the universe, with elementary particles and forces described as vibrations of tiny threads of energy. But in the early 21st century, it was realized that most of the versions of reality described by string theory’s equations cannot match up with observations of our own universe.

In particular, conventional ’s predictions are incompatible with the observation of dark energy, which appears to be causing our universe’s expansion to speed up, and with viable theories of quantum gravity, instead predicting a vast ‘swampland’ of impossible universes.

Now, a new analysis by FQxI physicist Eduardo Guendelman, of Ben-Gurion University of the Negev, in Israel, shows that an exotic subset of string models—in which the of strings is generated dynamically—could provide an escape route out of the string theory swampland.

“Like the Birth of Everything”: Scientists Recreate First Microseconds of Universe to Unveil Wild Behavior of Quark-Gluon Plasma

IN A NUTSHELL 🌌 Quark-gluon plasma dominated the universe’s earliest microseconds, shaping the cosmos we know today. 🔬 Researchers used lattice QCD and Monte Carlo simulations to unravel the complexities of the strong nuclear force. 📈 The study revealed that even at extreme temperatures, the strong force influenced particle behavior more than previously believed. 📚