Toggle light / dark theme

US finds missing particle that makes quantum computing fully possible

Researchers at the University of Southern California (USC) in the US turned to an often overlooked particle for storing and processing quantum information to overcome the fragility of quantum computers and make them more universal in the near future.

Positioning one such particle in a quantum computer can help overcome errors in quantum computing, a university press release said.

The age of quantum computing promises computations at speeds that will make even the fastest supercomputers of today appear like snails. These computers leverage quantum properties of materials to store information in quantum bits or ‘qubits’

From lead to gold in a flash at the Large Hadron Collider

At the Large Hadron Collider, scientists from the University of Kansas achieved a fleeting form of modern-day alchemy — turning lead into gold for just a fraction of a second. Using ultra-peripheral collisions, where ions nearly miss but interact through powerful photon exchanges, they managed to knock protons out of nuclei, creating new, short-lived elements. This breakthrough not only grabbed global attention but could help design safer, more advanced particle accelerators of the future.

Quantum “Schrödinger’s Cat” Survives For Mind-Blowing 23 Minutes In Record-Breaking Experiment

A yet-to-be peer-reviewed study by scientists at the University of Science and Technology of China involved cooling 10,000 ytterbium atoms to just a few thousandths of a degree above absolute zero and trapping them using light. Each atom was precisely controlled and placed into a superposition of two distinct spin states. This is known as a “quantum cat” state.

In the famous Schrödinger’s cat thought experiment, we see a cat closed in a box with a poison activated by a random quantum process. Without opening the box, we cannot ascertain the state of the cat, so it is both alive and dead, two contradictory states in the non-quantum reality we experience. In the quantum world, quantum cat states are superpositions where a quantum state can exist in several ways at once, although it’s impossible to tell which one it really is, so it’s effectively all of them at once.

In the recent experiment, it is the length of this quantum cat state that is astounding. In nature, the superposition will collapse into one or the other in a fraction of a second, but here it persisted for 1,400 seconds. The team thinks that with a better vacuum system, it can be made to last even longer.

Unlocking the secrets of our galaxy’s heart using magnetic fields

Deep in the heart of our galaxy lies one of the most chaotic and mysterious regions in space. Now, scientists have created the first detailed map of magnetic fields in this turbulent zone, providing crucial insights into how stars form and evolve in extreme environments.

The research, led by University of Chicago Ph.D. student Roy Zhao, focused on a region called Sagittarius C, located in the c near the center of the Milky Way. This area serves as what researchers call an astrophysical “Rosetta Stone,” an area key to understanding the complex interactions between dense gas clouds, star formation, and powerful magnetic fields that shape our galaxy.

The team used NASA’s now retired flying telescope SOFIA to study infrared light emitted by tiny dust grains scattered throughout the region. These microscopic particles act like compasses, aligning themselves with magnetic field lines and by analyzing the polarized light they emit, it’s possible to map the invisible magnetic fields for the first time.

Discarded particles dubbed ‘neglectons’ may unlock universal quantum computing

Quantum computers have the potential to solve problems far beyond the reach of today’s fastest supercomputers. But today’s machines are notoriously fragile. The quantum bits, or “qubits,” that store and process information are easily disrupted by their environment, leading to errors that quickly accumulate.

One of the most promising approaches to overcoming this challenge is topological quantum computing, which aims to protect by encoding it in the geometric properties of exotic particles called anyons. These particles, predicted to exist in certain two-dimensional materials, are expected to be far more resistant to noise and interference than conventional qubits.

“Among the leading candidates for building such a computer are Ising anyons, which are already being intensely investigated in condensed matter labs due to their potential realization in exotic systems like the fractional quantum Hall state and topological superconductors,” said Aaron Lauda, professor of mathematics, physics and astronomy at the USC Dornsife College of Letters, Arts and Sciences and the study’s senior author.

The First Molecules In The Universe Reveal Surprises After Being Bombarded With Deuterium

In new experiments, the team attempted to recreate the conditions of the early universe, and test whether HeH+ could provide the cooling needed to form the universe’s first stars. The team bombarded the molecule with deuterium at varying temperatures, simulated by varying the relative speed of the beams of particles. To their surprise, and contrary to previous predictions, the reaction rate did not slow as temperatures significantly decreased.

“Previous theories predicted a significant decrease in the reaction probability at low temperatures, but we were unable to verify this in either the experiment or new theoretical calculations by our colleagues,” Dr Holger Kreckel from the Max-Planck-Institut für Kernphysik (MPIK) explained in a statement. “The reactions of HeH⁺ with neutral hydrogen and deuterium therefore appear to have been far more important for chemistry in the early universe than previously assumed.”

These results could have profound implications for our understanding of the early universe, and may even force a bit of reevaluation.

Surfaces, not confinement, rule until the thinnest limits

Researchers at the Max Planck Institute for Polymer Research have upended assumptions about how water behaves when squeezed into atom-scale spaces. By applying spectroscopic tools together with the machine learning simulation technique to water confined in a space of only a few molecules thick, the team, led by Mischa Bonn, found that water’s structure remains strikingly “normal” until confined to below a nanometer, far thinner than previously believed.

The research, “Interfaces Govern the Structure of Angstrom-Scale Confined Water Solutions,” was published in Nature Communications.

Peering into the structure of a layer of water molecules that is only a few molecules thick is a formidable scientific challenge. The team fabricated a nanoscale capillary device by trapping water between a single layer of graphene and a calcium fluoride (CaF₂) substrate. They then wielded cutting-edge vibrational surface-specific spectroscopy—capable of detecting the microscopic structure of confined water, including the orientation and hydrogen-bonding of water molecules—to “see” the elusive few layers of water.

Direct visualization of quantum zero-point motion in complex molecule reveals eternal dance of atoms

Most of us find it difficult to grasp the quantum world. According to Heisenberg’s uncertainty principle, it’s like observing a dance without being able to see simultaneously exactly where someone is dancing and how fast they’re moving—you always must choose to focus on one.

And yet, this quantum dance is far from chaotic; the dancers follow a strict choreography. In , this strange behavior has another consequence: Even if a molecule should be completely frozen at absolute zero, it never truly comes to rest. The it is made of perform a constant, never-ending quiet dance driven by so-called zero-point energy.

Radiation Shield Improves Optical Clocks

A new experimental design eliminates the top source of clock uncertainty.

Optical lattice clocks (OLCs) are among the world’s best atomic clocks. Their largest source of uncertainty results from the ubiquitous blackbody radiation (BBR). Now Youssef Hassan of the National Institute of Standards and Technology in Colorado and his colleagues have demonstrated a cryogenic OLC with a radiation shield that virtually eliminates BBR-associated uncertainty [1]. The researchers expect this OLC design to allow major improvements in clock accuracy.

In an OLC, hundreds to tens of thousands of atoms are lined up in a 1D lattice formed by a laser beam. A second (clock) beam, whose frequency can be tuned, then excites the atoms to a specific quantum state. The clock-beam frequency that maximizes the number of atoms making the transition defines the “ticking rate” of the OLC. BBR perturbs the atoms’ quantum states and decreases the OLC’s accuracy.

/* */