Archive for the ‘particle physics’ category: Page 6

Mar 21, 2024

Black Holes May Be Portal To Another Universe, Stephen Hawking Explains

Posted by in categories: cosmology, law enforcement, particle physics

Scientists have referred to black holes as cosmic objects that consume whatever comes into them but do not allow anything to escape from the inside. Stephen Hawking assumes that a black hole could be a portal to another universe. While addressing about 1,000 people at Harvard in 2015, Hawkings analyzed the groundbreaking theory with these words.

“Blackholes aren’t the eternal prisons they were once thought. Things can get out of a black hole, both from the outside and possibly through another universe. So, if you ever feel you’re in a black hole, don’t give up. There’s a way out.”

Scientists listening to the renowned astrophysicist were fascinated with his explanations. Keep in mind that Stephen Hawkings came up with Hawking’s radiation theory which revolutionized our understanding of black holes. According to this theory, Black holes thermally generate and emit subatomic particles until they lose their energy and proceed to evaporate. Based on this theory, Hawkings says that black holes are not entirely black and they don’t last for eternity.

Mar 20, 2024

CERN measures coupled resonance structure that may cause particle loss in accelerators for the first time

Posted by in categories: media & arts, particle physics

Whether in listening to music or pushing a swing in the playground, we are all familiar with resonances and how they amplify an effect—a sound or a movement, for example. However, in high-intensity circular particle accelerators, resonances can be an inconvenience, causing particles to fly off their course and resulting in beam loss. Predicting how resonances and non-linear phenomena affect particle beams requires some very complex dynamics to be disentangled.

Mar 20, 2024

Diamond Can Be Squeezed Into Something Even Harder. Now We Know How to Do It

Posted by in categories: particle physics, quantum physics, supercomputing

Simulations of an elusive carbon molecule that leaves diamonds in the dust for hardness may pave the way to creating it in a lab.

Known as the eight-atom body-centered cubic (BC8) phase, the configuration is expected to be up to 30 percent more resistant to compression than diamond – the hardest known stable material on Earth.

Physicists from the US and Sweden ran quantum-accurate molecular-dynamics simulations on a supercomputer to see how diamond behaved under high pressure when temperatures rose to levels that ought to make it unstable, revealing new clues on the conditions that could push the carbon atoms in diamond into the unusual structure.

Mar 20, 2024

Supercomputers Crack the Code of Super-Diamond Synthesis

Posted by in categories: particle physics, space, supercomputing

Researchers are on a quest to synthesize BC8, a carbon structure predicted to be tougher than diamond, using insights from advanced simulations and experimental efforts. This material, theoretically prevalent in the extreme pressures of exoplanets, remains a scientific mystery with promising applications in materials science.

Diamond is the strongest material known. However, another form of carbon has been predicted to be even tougher than diamond. The challenge is how to create it on Earth.

The eight-atom body-centered cubic (BC8) crystal is a distinct carbon phase: not diamond, but very similar. BC8 is predicted to be a stronger material, exhibiting a 30% greater resistance to compression than diamond. It is believed to be found in the center of carbon-rich exoplanets. If BC8 could be recovered under ambient conditions, it could be classified as a super-diamond.

Mar 19, 2024

‘Sound laser’ is the most powerful ever made

Posted by in category: particle physics

A new device uses a reflective cavity, a tiny bead and an electrode to create a laser beam of sound particles ten times more powerful and much narrower than other “phonon lasers”

Mar 19, 2024

Cracking the quantum code: Simulations track entangled quarks

Posted by in categories: particle physics, quantum physics

Today, the word “quantum” is everywhere—in company names, movie titles, even theaters. But at its core, the concept of a quantum—the tiniest, discrete amount of something—was first developed to explain the behavior of the smallest bits of matter and energy.

Mar 19, 2024

Secrets of Quantum Physics, “Einstein’s Nightmare” 4k

Posted by in categories: particle physics, quantum physics

Quantum physics starts with the 20th century as scientists try to understand light bulbs. This simple quest led scientists on a deep journey.

Professor Jim Al-Khalili reveals how Einstein thought he’d found a fatal flaw in quantum physics that implies that subatomic particles can communicate faster than light. The host of \.

Mar 18, 2024

Unlocking Quantum Secrets: The Revolutionary Dance of Nanoparticles

Posted by in categories: nanotechnology, particle physics, quantum physics

Innovative research leverages levitated optomechanics to observe quantum phenomena in larger objects, offering potential applications in quantum sensing and bridging the gap between quantum and classical mechanics.

The question of where the boundary between classical and quantum physics lies is one of the longest-standing pursuits of modern scientific research and in new research published today, scientists demonstrate a novel platform that could help us find an answer.

The laws of quantum physics govern the behavior of particles at minuscule scales, leading to phenomena such as quantum entanglement, where the properties of entangled particles become inextricably linked in ways that cannot be explained by classical physics.

Mar 17, 2024

Quantum Leap in Material Science: Researchers Unveil AI-Powered Atomic Fabrication Technique

Posted by in categories: chemistry, particle physics, quantum physics, robotics/AI, science

Researchers at the National University of Singapore (NUS) have developed an innovative method for creating carbon-based quantum materials atom by atom. This method combines the use of scanning probe microscopy with advanced deep neural networks. The achievement underlines the capabilities of artificial intelligence (AI) in manipulating materials at the sub-angstrom level, offering significant advantages for basic science and potential future uses.

Open-shell magnetic nanographenes represent a technologically appealing class of new carbon-based quantum materials, which host robust π-spin centers and non-trivial collective quantum magnetism. These properties are crucial for developing high-speed electronic devices at the molecular level and creating quantum bits, the building blocks of quantum computers.

Continue reading “Quantum Leap in Material Science: Researchers Unveil AI-Powered Atomic Fabrication Technique” »

Mar 17, 2024

Quantum Leap: How Spin Squeezing Pushes Limits of Atomic Clock Accuracy

Posted by in categories: particle physics, quantum physics

Physicists are pushing the limits of atomic clock accuracy by using spin-squeezed states, achieving groundbreaking control over quantum noise and entanglement, leading to potential leaps in quantum metrology.

While atomic clocks are already the most precise timekeeping devices in the universe, physicists are working hard to improve their accuracy even further. One way is by leveraging spin-squeezed states in clock atoms. Spin-squeezed states are entangled states in which particles in the system conspire to cancel their intrinsic quantum noise. These states, therefore, offer great opportunities for quantum-enhanced metrology since they allow for more precise measurements. Yet, spin-squeezed states in the desired optical transitions with little outside noise have been hard to prepare and maintain.

One particular way to generate a spin-squeezed state, or squeezing, is by placing the clock atoms into an optical cavity, a set of mirrors where light can bounce back and forth many times. In the cavity, atoms can synchronize their photon emissions and emit a burst of light far brighter than from any one atom alone, a phenomenon referred to as superradiance. Depending on how superradiance is used, it can lead to entanglement, or alternatively, it can instead disrupt the desired quantum state.

Page 6 of 509First345678910Last