Menu

Blog

Archive for the ‘neuroscience’ category: Page 5

Jan 7, 2025

Sex differences in brain structure are present from birth, research shows

Posted by in categories: neuroscience, sex

Gray matter is made up of neuron cell bodies and dendrites and is responsible for processing and interpreting information, such as sensation, perception, learning, speech, and cognition. White matter is made up of axons, which are long nerve fibers that connect neurons together from different parts of the brain.

In the study, male brains tended to be greater in volume than female brains. When adjusted for total brain volume, female infants on average had significantly more , while on average had significantly more in their brains.

Yumnah Khan, a Ph.D. student at the Autism Research Center at the University of Cambridge, who led the study, said, Our study settles an age-old question of whether male and female brains differ at birth. We know there are differences in the brains of older children and adults, but our findings show that they are already present in the earliest days of life.

Jan 7, 2025

Could This Be the Cure? Targeting Protein Imbalances To Stop Alzheimer’s

Posted by in categories: biotech/medical, health, neuroscience

Scientists have identified a key nucleolar complex that could be instrumental in combating neurodegenerative diseases. This complex plays a critical role in maintaining cellular health by regulating protein homeostasis (proteostasis)—the process by which cells ensure proper protein balance and function.

Research reveals that suppressing this nucleolar complex significantly reduces the toxic effects of proteins associated with Alzheimer’s.

Alzheimer’s disease is a progressive neurological disorder that primarily affects older adults, leading to memory loss, cognitive decline, and behavioral changes. It is the most common cause of dementia. The disease is characterized by the buildup of amyloid plaques and tau tangles in the brain, which disrupt cell function and communication. There is currently no cure, and treatments focus on managing symptoms and improving quality of life.

Jan 7, 2025

On a Wild Mouse Chase to Understand Parenting, Love, and Fear

Posted by in categories: genetics, neuroscience

Studying a diverse and peculiar genus of mice offers researchers a window into the genetic and neural underpinnings of behavior.

Jan 7, 2025

New Biomarker Links Brain Waste Clearance to Vascular Dementia

Posted by in categories: biotech/medical, neuroscience

Summary: A new study has identified a biomarker, DTI-ALPS, which connects glymphatic system dysfunction to vascular dementia. By analyzing over 3,750 participants, researchers found that lower DTI-ALPS scores correlated with worse executive function, highlighting the glymphatic system’s role in clearing brain waste.

The study also uncovered a potential pathway linking impaired waste clearance to cognitive decline, mediated by free water accumulation in white matter. These findings provide a robust tool for clinical trials and potential interventions, including lifestyle changes and medications, to enhance glymphatic function and treat vascular dementia.

Jan 7, 2025

Why time slows down in altered states of consciousness

Posted by in category: neuroscience

In “time expansion experiences,” time typically appears to expand by many orders of magnitude.

Jan 7, 2025

How electrical synapses fine-tune sensory information for better decisions

Posted by in category: neuroscience

Scientists at Yale and the University of Connecticut have taken a major step in understanding how animal brains make decisions, revealing a crucial role for electrical synapses in “filtering” sensory information.

The new research, published in the journal Cell, demonstrates how a specific configuration of electrical synapses enables animals to make context-appropriate choices, even when faced with similar sensory inputs.

Animal brains are constantly bombarded with sensory information—sights, sounds, smells, and more. Making sense of this information, scientists say, requires a sophisticated filtering system that focuses on relevant details and enables an animal to act accordingly. Such a filtering system doesn’t simply block out “noise”—it actively prioritizes information depending on the situation. Focusing on certain sensory information and deploying a context-specific behavior is known as “action selection.”

Jan 7, 2025

Jellyfish Protein Shines Bright in Quantum Sensor for Biomedical Applications

Posted by in categories: biotech/medical, chemistry, computing, engineering, neuroscience, quantum physics

While most of us are familiar with magnets from childhood games of marveling at the power of their repulsion or attraction, fewer realize the magnetic fields that surround us—and the ones inside us. Magnetic fields are not just external curiosities; they play essential roles in our bodies and beyond, influencing biological processes and technological systems alike. A recent arXiv publication from the University of Chicago’s Pritzker School of Molecular Engineering and Argonne National Laboratory highlights how magnetic fields in the body may be analyzed using quantum-enabled fluorescent proteins, with hopes of applying to cell formation or early disease detection.

Detecting subtle changes in magnetic fields may equate to beyond subtle impacts in certain fields. For instance, quantum sensors could be applied to the detection of electromagnetic anomalies in data centers, potentially revealing evidence of malicious tampering. Similarly, they might be used to study changes in the brain’s electromagnetic signals, offering insights into neurological diseases such as the onset of dementia. However, these applications demand sensors that are not only sensitive but also capable of operating reliably in real-world conditions.

Spin qubits, known for their notable sensitivity to magnetic fields, are introduced in the study as a compelling solution. Traditionally, spin qubits have been formed from nitrogen-vacancy centers in diamonds. While these systems have demonstrated remarkable precision, the diamonds’ bulky size in relation to molecules and complex surface chemistry limit their usability in biological environments. This creates a need for a more adaptable and biologically compatible sensor.

Jan 7, 2025

The mind-body problem in the philosophy of mind and cognitive neuroscience: a physicalist naturalist solution

Posted by in category: neuroscience

Using an analysis of a voluntary action caused by a visual perception, I suggest that the three fundamental characteristics of this perception (being conscious, self-conscious, and provided with a content) are neurologically implemented by three distinct higher order properties of brain dynamics. This hypothesis allows me to sketch out a physicalist naturalist solution to the mind-body problem. According to this solution, primary phenomenal consciousness is neither a non-physical substance, nor a non-physical property but simply the “format” that the brain gives to a part of its dynamics in order to obtain a fine tuning with its environment when the body acts on it.

Jan 7, 2025

Your Brain Is Like a Computer: Function, Analogy, Simplification

Posted by in categories: computing, mathematics, neuroscience

The relationship between brain and computer is a perennial theme in theoretical neuroscience, but it has received relatively little attention in the philosophy of neuroscience. This paper argues that much of the popularity of the brain-computer comparison (e.g. circuit models of neurons and brain areas since McCulloch and Pitts, Bull Math Biophys 5: 115–33, 1943) can be explained by their utility as ways of simplifying the brain. More specifically, by justifying a sharp distinction between aspects of neural anatomy and physiology that serve information-processing, and those that are ‘mere metabolic support,’ the computational framework provides a means of abstracting away from the complexities of cellular neurobiology, as those details come to be classified as irrelevant to the (computational) functions of the system.

Jan 7, 2025

Snap judgments: How first impressions of faces shape inferences of mental states

Posted by in categories: biotech/medical, neuroscience

When we first meet another person, we typically form an initial impression of them based on their facial features and appearance. These first impressions of others could potentially influence our subsequent cognitive processes, such as what mental states we believe that the people we meet are experiencing at a given time.

Researchers at the University of California San Diego (UCSD), the California Institute of Technology and Dartmouth College carried out a study investigating the potential relationship between first impressions of faces and the inference of mental states. Their findings, published in Nature Human Behavior, suggest that first impressions of faces influence the inference of other people’s mental states.

“Over the years there have been a lot of surprising findings showing how first impressions from faces can predict important outcomes, such as which candidates would win an election, which politicians would be convicted of corruption, and which offenders would be sentenced to death,” Chujun Lin, first author of the paper, told Medical Xpress.

Page 5 of 1,046First23456789Last