Toggle light / dark theme

CTE and normal aging are difficult to distinguish, new study finds

In recent years, some scientists and advocates have warned that playing contact sports like football and hockey may increase the risk of brain diseases like Alzheimer’s disease or chronic traumatic encephalopathy (CTE) due to a buildup of a specific protein in the brain.

But a new Northwestern Medicine study of 174 donated brains, including some from former high school and , pumps the brakes on that theory.

“The long and short of it is no, this protein in this specific brain region is not increased in people who played football at the amateur level. It throws a little bit of cold water on the current CTE narrative,” said corresponding author Dr. Rudolph Castellani, professor of pathology at Northwestern University Feinberg School of Medicine and a Northwestern Medicine neuropathologist.

Paul Couvert on X: Wow Grok 4 is incredibly good This is the 1st model to generate such a good 3D simulation of the earth

Imagine having a conversation where every gesture and glance feels like a test. You’re juggling eye contact, facial expressions, and tone of voice, all while trying to keep up with the words. You might miss something, or someone might misread you.

In a new study, published in PLOS One, autistic adults describe the intense mental effort it takes to navigate nonverbal communication (NVC).

Researchers reviewed 362 firsthand accounts on the online forum WrongPlanet.net, where autistic adults openly talk about communication challenges. They focused on posts about nonverbal communication—like eye contact, tone of voice, gestures, and facial expressions—and reviewed 26 discussion threads to better understand from autistic adults what it is like to communicate in daily life.

Key brain protein may hold answers for memory loss and neurodegenerative diseases

Scientists have discovered how a key protein helps maintain strong connections between brain cells that are crucial for learning and memory.

Results of the study, published in the journal Science Advances, could point the way to new treatments for traumatic brain injuries and diseases, such as Parkinson’s and Alzheimer’s, the scientists said.

Their research, led by a Rutgers University-New Brunswick professor, uncovered a previously unknown role for cypin, a . Members of the research team found that cypin promotes the presence of tags on specific proteins at synapses, namely the tiny gaps where the , known as neurons, communicate. The marking helps ensure that the right proteins are in the right place, allowing the synapses to work properly.

Study shows how brain-to-computer ‘electroceuticals’ can help restore cognition

Research led by Thilo Womelsdorf, professor of psychology and biomedical engineering at the Vanderbilt Brain Institute, could revolutionize how brain-computer interfaces are used to treat disorders of memory and cognition.

The study, “Adaptive reinforcement learning is causally supported by and striatum,” was published June 10, 2025, in the journal Neuron.

According to researchers, neurologists use electrical (BCIs) to help patients with Parkinson’s disease and when drugs and other rehabilitative interventions are not efficient. For these disorders, researchers say brain-computer interfaces have become electroceuticals that substitute pharmaceuticals by directly modulating dysfunctional brain signals.

‘Weird shading’ tricks the brain into seeing 3D forms from simple lines

Shading brings 3D forms to life, beautifully carving out the shape of objects around us. Despite the importance of shading for perception, scientists have long been puzzled about how the brain actually uses it. Researchers from Justus-Liebig-University Giessen and Yale University recently came out with a surprising answer.

Previously, it has been assumed that one interprets shading like a physics-machine, somehow “reverse-engineering” the combination of and lighting that would recreate the shading we see. Not only is this extremely challenging for advanced computers, but the visual is not designed to solve that sort of problem. So, these researchers decided to start instead by considering what is known about the brain when it first gets signals from the eye.

“In some of the first steps of visual processing, the brain passes the image through a series of ‘edge-detectors,’ essentially tracing it like an etch-a-sketch,” Professor Roland W. Fleming of Giessen explains. “We wondered what shading patterns would look like to a brain that’s searching for lines.” This insight led to an unexpected, but clever short-cut to the shading inference problem.

More misfolded proteins than previously known may contribute to Alzheimer’s and dementia

For decades, the story of Alzheimer’s research has been dominated by a battle between A-beta and tau amyloids, both of which can kill neurons and impact the brain’s ability to function. A new study suggests, however, that these sticky brain plaques may not be operating alone.

Johns Hopkins University researchers have identified more than 200 types of in rats that could be associated with age-related cognitive decline.

The findings could lead the way to finding new therapeutic targets and treatments in humans that could provide relief for the millions of people over 65 who suffer from Alzheimer’s, dementia, or other diseases that rob them of their memories and independence as they age.

Scientists Succeed in Reversing Parkinson’s Symptoms in Mice

In 2017, he led a study that identified for the first time an abnormal form of a protein called SOD1 in Parkinson’s patients. Under normal conditions, this protein acts as an antioxidant enzyme, protecting brain cells from damage caused by free radicals, highly reactive molecules that contain oxygen and can deteriorate cells if not properly neutralized. Free radicals are produced by natural bodily processes as well as by external factors, like diet, smoking, and exposure to pollution.

In people with Parkinson’s disease, SOD1 suffers alterations that prevent it from fulfilling its protective function, with it instead accumulating in the brain and causing neuronal damage, according to the findings of Double’s team.

Based on these results, the team then conducted further research, with results suggesting that copper supplementation in the brain could be an effective way to slow and even reverse the symptoms of Parkinson’s (copper is crucial to SOD1’s function). To test this hypothesis, they evaluated the efficacy of a drug called CuATSM, designed to cross the blood-brain barrier and deliver copper directly to brain tissue.