Toggle light / dark theme

First-Ever Treatment for Rare Eye Disease Wins FDA Approval After Landmark Trials

Phase 3 clinical trial results from Scripps Research and its collaborators supported FDA approval of ENCELTO, the first cell-based treatment for the neurodegenerative retinal disease known as MacTel. For individuals with macular telangiectasia type 2 (MacTel), a rare retinal disease that steadily

The pharma industry from Paul Janssen to today: why drugs got harder to develop and what we can do about it

Personal site for posts about my interests: the biotech industry, medicine, molecular biology, neuroscience, biorisk, science, consciousness, AI, innovation, decision making, philosophy, games, sci-fi, probability, and forecasting (among other things). I write to learn, mostly about biotech.

Immune cells in the brain help shape adolescent neural circuits

Making a smoothie, going for an evening walk, or having empathy for a loved one are all examples of executive functions that are controlled by the brain’s frontal cortex. This area of the brain goes through profound change throughout adolescence, and it is during this time that abnormalities in maturing circuits can set the stage for neurodevelopmental disorders, such as schizophrenia and ADHD.

Researchers at the Del Monte Institute for Neuroscience at the University of Rochester have discovered that microglia, the brain’s immune cells, play a key role in how the brain adapts to the changes in this area during adolescence, which may transform how are treated during this window and, possibly, into adulthood.

“A better understanding of the ways we can drive changes in these circuits offers new targets for disease treatment,” said Rianne Stowell, Ph.D., research assistant professor of Neuroscience at the University of Rochester Medical Center, and first author of the study out today in Nature Communications.

A promising approach for the direct on-chip synthesis of boron nitride memristors

Two-dimensional (2D) materials, thin crystalline substances only a few atoms thick, have numerous advantageous properties compared to their three-dimensional (3D) bulk counterparts. Most notably, many of these materials allow electricity to flow through them more easily than bulk materials, have tunable bandgaps, are often also more flexible and better suited for fabricating small, compact devices.

Past studies have highlighted the promise of 2D materials for creating advanced systems, including devices that perform computations emulating the functioning of the brain (i.e., neuromorphic computing systems) and chips that can both process and store information (i.e., in-memory computing systems). One material that has been found to be particularly promising is (hBN), which is made up of boron and nitrogen atoms arranged in a honeycomb lattice resembling that of graphene.

This material is an excellent insulator, has a wide bandgap that makes it transparent to visible light, a good mechanical strength, and retains its performance at high temperatures. Past studies have demonstrated the potential of hBN for fabricating memristors, that can both store and process information, acting both as memories and as resistors (i.e., components that control the flow of electrical current in ).

Can immune cells stave off devastating neurodegenerative diseases? Scientists aim to find out

An evolving form of therapy to treat devastating neurodegenerative disorders by injecting fresh immune cells—microglia—directly into the brain, promises a new lease on health by slowing the progression of mind-robbing conditions.

The research, underway in China, is in the pre-clinical phase of investigation and is aimed at protecting vital neurons, while at the same time, combating the early hallmarks of neurological disorders, such as Alzheimer’s disease.

So far, the transplants have been performed in animal models, but they have ameliorated symptoms of neurological disease.

Strangers whose brains respond alike to movie clips often become friends later, study finds

People often bond with strangers over the books they read or the movies they watch and build friendships that last. Scientists may now have some insight into why this happens. A study published in Nature Human Behaviour found that participants who responded similarly to the same movie clips even before meeting were more likely to become friends later.

As part of the experiment, MRI brain scans were taken of 41 graduate students who had never met each other before, while they were shown clips of movies based on science, food, sports, environment, and .

A total of 214 were analyzed—200 cortical regions associated with functions, such as movement, perception, and sensory processing, and 14 subcortical regions that control movement, autonomic functions, and emotions.

Your Eye Movements Could Be Hiding Signs of a Failing Memory

The ways our eyes explore the world change subtly over time, affected by age and illness.

A new study now suggests some of those changes could be used to identify problems with memory and cognition.

Researchers from Canada and the West Indies built on previous work by searching for variations in eye viewing patterns in people with and without a diagnosis for a brain health issue.

Potentiation of mitochondrial function by mitoDREADD-Gs reverses pharmacological and neurodegenerative cognitive impairment in mice

Activation of Gs signaling at mitochondria by mitoDREADD-Gs increases mitochondrial metabolism, leading to better memory in mouse models of dementia, directly linking brain mitochondrial deficits to cognitive symptoms of neurodegenerative diseases.

Gut neurons help body fight inflammation with immune-regulating molecule

Neurons in the gut produce a molecule that plays a pivotal role in shaping the gut’s immune response during and after inflammation, according to a new study by Weill Cornell Medicine investigators. The findings suggest that targeting these neurons and the molecules they produce could open the door to new treatments for inflammatory bowel disease and other disorders driven by gut inflammation.

Hundreds of millions of neurons make up the enteric nervous system, the “second brain” of the body, where they orchestrate essential functions of the gut such as moving food through the intestines, nutrient absorption and blood flow. While this system is known for regulating these fundamental processes, its role in controlling intestinal inflammatory responses has remained far less clear.

In their study, reported August 15 in Nature Immunology, the investigators focused on group 2 innate lymphoid cells (ILC2s), immune cells that reside within the linings of the gut. Their previous work revealed that ILC2s are a major source of a tissue-healing growth factor called amphiregulin and have the capacity to receive neuronal signals that modulate their function and can impact disease progression and recovery.

/* */