To harness the power of the sun and make sugars for energy storage, plants use photosynthesis. But some plants are more efficient at it than others. For the first time, researchers have identified a key step in the transformation between old-fashioned C3 photosynthesis and new and improved C4 photosynthesis — which could lead to the development of more efficient, more resilient “super crops,” SciTechDaily reports.
Scientists at the Salk Institute in San Diego, California, collaborated with researchers at the University of Cambridge to make the breakthrough, charting the evolution of plants over millions of years.
While 95% of plants use C3 photosynthesis, SciTechDaily explained, a new group of plants evolved to use C4 photosynthesis around 30 million years ago.
Solid-state lithium batteries are promising energy storage solutions that utilize solid electrolytes as opposed to the liquid or gel electrolytes found in traditional lithium-ion batteries (LiBs). Compared to LiBs and other batteries that are used worldwide, these batteries could attain significantly higher energy densities of more than 500 Wh/kg−1 and 1,000 Wh/l−1, which could be advantageous for powering electric vehicles and other electronics for longer periods of time.
Despite their possible advantages, existing solid-state lithium batteries exhibit significant limitations that have so far prevented their large-scale deployment. These include the active lithium loss that can occur while the batteries are charged and discharged, which can reduce their efficiency and overall performance.
This loss of lithium is caused by an inhomogeneous lithium plating. Devising effective strategies and thin lithium metal foils that could limit the loss of lithium in solid-state batteries is thus a key goal for the energy research community.
BERKELEY, Calif., Dec. 19, 2024 — Scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) used lasers and a supersonic sheet of gas to accelerate a high-quality beam of electrons to 10 billion electronvolts (eV) in just 30 cm. The energy and quality of the beam is a significant improvement compared to previous efforts.
Child mortality in conflict settings was 8 percent, compared with 1.1 percent in peaceful countries.
It also said that 83.2 percent of the world’s poorest people live in sub-Saharan Africa and South Asia.
The index, compiled jointly with the Oxford Poverty and Human Development Initiative (OPHI), used indicators such as a lack of adequate housing, sanitation, electricity, cooking fuel, nutrition and school attendance to assess levels of “multidimensional poverty”
The notion of entropy grew out of an attempt at perfecting machinery during the industrial revolution. A 28-year-old French military engineer named Sadi Carnot set out to calculate the ultimate efficiency of the steam-powered engine. In 1824, he published a 118-page book(opens a new tab) titled Reflections on the Motive Power of Fire, which he sold on the banks of the Seine for 3 francs. Carnot’s book was largely disregarded by the scientific community, and he died several years later of cholera. His body was burned, as were many of his papers. But some copies of his book survived, and in them lay the embers of a new science of thermodynamics — the motive power of fire.
Carnot realized that the steam engine is, at its core, a machine that exploits the tendency for heat to flow from hot objects to cold ones. He drew up the most efficient engine conceivable, instituting a bound on the fraction of heat that can be converted to work, a result now known as Carnot’s theorem. His most consequential statement comes as a caveat on the last page of the book: “We should not expect ever to utilize in practice all the motive power of combustibles.” Some energy will always be dissipated through friction, vibration, or another unwanted form of motion. Perfection is unattainable.
Reading through Carnot’s book a few decades later, in 1865, the German physicist Rudolf Clausius coined a term for the proportion of energy that’s locked up in futility. He called it “entropy,” after the Greek word for transformation. He then laid out what became known as the second law of thermodynamics: “The entropy of the universe tends to a maximum.”
Physicists of the era erroneously believed that heat was a fluid (called “caloric”). Over the following decades, they realized heat was rather a byproduct of individual molecules bumping around. This shift in perspective allowed the Austrian physicist Ludwig Boltzmann to reframe and sharpen the idea of entropy using probabilities.
After forty years, the creator of scar theory has observed the phenomenon in real time.
Quantum scarring is a phenomenon in which traveling electrons end up following the same repeating path.
Scars of Chaos: Visualizing Mysteries in Graphene Dots probabilities cluster along the paths of unstable orbits from their classical counterparts. These scars, while predicted, have remained elusive to direct observation—until now. + Using an innovative combination of graphene dot fabrication and advanced wavefunction mapping via scanning tunneling microscopy, researchers captured stunning images of scars. Within stadium-shaped GQDs, they observed striking lemniscate (∞-shaped) and streak-like probability patterns. These features recur at equal energy intervals, aligning with theoretical predictions for relativistic scars—a fascinating blend of mechanics and relativity.
The researchers further confirmed that these patterns are connected to two specific unstable periodic orbits within the GQD, bridging the chaotic motion of classical systems with the world. Beyond providing the first visual proof of scarring, this work lays the foundation for exploring other exotic scar phenomena, such as those induced by perturbations, chirality, or antiscarring effects.
This sets the stage for new discoveries in [#mechanics](https://www.facebook.com/hashtag/mechanics?__eep__=6&__cft__[0]=AZXPCRQF-knoMxWsHdGuAINl_hxSgWpjd9vUPszcDQDED9B4XtpXqPPhvcrED0NuOfXnWgthLMzgHmb5MWHbg6_KCiMiM3QaLJM2p6zXDiZd5oSUVWZeKR8qhHn2bevNFEnZj4T-bvc595A_jLYg-RLGWJOGrgLefEZI-7CDt6hSLX7CskI28RIoWnxvrZR2Xks&__tn__=*NK-R), [#chaos](https://www.facebook.com/hashtag/chaos?__eep__=6&__cft__[0]=AZXPCRQF-knoMxWsHdGuAINl_hxSgWpjd9vUPszcDQDED9B4XtpXqPPhvcrED0NuOfXnWgthLMzgHmb5MWHbg6_KCiMiM3QaLJM2p6zXDiZd5oSUVWZeKR8qhHn2bevNFEnZj4T-bvc595A_jLYg-RLGWJOGrgLefEZI-7CDt6hSLX7CskI28RIoWnxvrZR2Xks&__tn__=*NK-R) theory, and material science, with potential applications ranging from technologies to our understanding of fundamental physical laws.
A China-based firm has launched a novel energy storage device that tackles the 18650-battery power challenge. Introduced by Ampace, the latest JP30 cylindrical lithium battery is claimed to be capable of delivering breakthrough performance in a compact form.
Themed “Working Non-stop, compact and more powerful”, the new battery is the latest addition to the JP series.
Despite having a compact and sleek design in appearance, the battery offers ultra-high power performance.
That means digging all the trenching and building out all the electrical distribution equipment on site, if not all the chargers, with a microgrid that’s capable of working as well in the future with 12 MW of power as it does with just 4 MW.
“I think this is the same challenge that all of these large sites are facing—it takes an extremely long time to get the power from the utility. Meanwhile, you don’t need it immediately. So how do you create this sort of staged future-proof solution where you’re not having to open the roads multiple times? You want one construction phase and you want that site to support the future demand,” Putignano said.
For fleets that need their own private charging infrastructure, there are other things to think about, too. Energy management solutions are as important here—microgrids as well as battery storage and battery-buffered chargers will play an important role, for example. But not every energy management solution is charger-agnostic, and the collapse of charger manufacturers like Juicebox and Tritium highlight the perils of being stuck in a walled garden belonging to a dead company.