Toggle light / dark theme

Challenging centuries-old assumptions about thermodynamics, a new study published in Physical Review Letters has shown that it is theoretically possible to design a heat engine that achieves maximum power output while approaching Carnot efficiency.

The Carnot heat engine is a thermodynamic device that converts heat into by operating between two temperature reservoirs, a hot and cold one.

The engine works by taking heat from the hot reservoir, converting some of it into useful work, and rejecting the remaining heat to the cold reservoir. The thermodynamic cycle followed by the engine is known as the Carnot cycle.

In a new study published in Nature Physics, researchers have developed the first controlled method for exciting and observing Kelvin waves in superfluid helium-4.

First described by Lord Kelvin in 1880, Kelvin waves are helical (spiral-shaped) waves that travel along the lines, playing a vital role in how energy dissipates in . However, they are difficult to study experimentally.

Creating a controlled setting to observe them has been the biggest challenge that the researchers overcame. Phys.org spoke to the first author of the study, Associate Prof. Yosuke Minowa from Kyoto University.

Electrochemical stimuli-responsive materials are gaining more attention in the world of display technology. Based on external stimuli, such as low voltage, these materials can instantaneously undergo electrochemical reactions.

These electrochemical reactions can result in the production of different colors, enhancing options. An electrochemical system consists of electrodes and electrolytes. Combining the luminescent and coloration molecules on the electrodes instead of the electrolyte can offer higher efficiencies and stability for display devices.

To this end, a research team from Japan employed clay membranes to effectively integrate the coloration and luminescence molecules. Their innovative dual-mode electrochemical device merges the ability to emit light and change color, offering a highly adaptable and energy-efficient solution for modern displays.

“There are numerous challenges involved in developing a membrane that could ultimately be used as lightsail. It needs to withstand heat, hold its shape under pressure, and ride stably along the axis of a laser beam,” said Dr. Harry Atwater, who is a Howard Hughes Professor of Applied Physics and Materials Science at Caltech and a co-author on the study. “But before we can begin building such a sail, we need to understand how the materials respond to radiation pressure from lasers. We wanted to know if we could determine the force being exerted on a membrane just by measuring its movements. It turns out we can.”

For the study, the researchers used real-life models to simulate the size of the lightsail, amount of laser power needed to propel the lightsail, and amount of pressure exerted on the lightsail to achieve the desired speed. After creating their own miniature lightsail measuring 40 microns long, 40 microns wide, and 50 nanometers thick tethered to four strings, the team subjected it to laser light to measure the amount of radiation pressure the lightsail was experiencing. In the end, the team found the specific angle and amount of force required to push the lightsail forward. Through this, they successfully established groundwork for potentially constructing larger lightsails in the future.

‘Earth factory’ method cooks up clean fertilizer underground.

In the 1980s, well diggers in Mali, West Africa uncovered an unusual geological phenomenon: a well streaming with hydrogen gas, which scientists traced back to chemical reactions between water and rock occurring deep within the Earth. Now, researchers are harnessing our planet’s natural heat and pressure to cook up ammonia for fertilizer—potentially reducing the need for chemical plants powered by fossil fuels.

Ammonia, which is primarily used as a source for nitrogen fertilizer and also being considered for use as a green fuel, is the most widely produced chemical in the world today. Unfortunately, the standard method for making ammonia, known as the Haber-Bosch process, consumes enormous amounts of energy—making it a major source of greenhouse gas emissions. In fact, ammonia production is the chemical industry’s biggest greenhouse gas emitter.

Scientists have unlocked a groundbreaking way to produce clean hydrogen using microwaves, drastically reducing the extreme heat required for conventional methods.

By harnessing microwave energy, the team lowered the reaction temperature by over 60%, making hydrogen production far more efficient and sustainable. A key breakthrough was the rapid creation of oxygen vacancies, essential for splitting water into hydrogen, in just minutes rather than hours.

Revolutionizing Hydrogen Production with Microwaves.

The structural design of molecular machines and motors endows them with externally controlled directional motion at the molecular scale. Molecular machines based on both interlocked and non-interlocked molecules and driven by a variety of external stimuli such as light, electrical-or thermal energy, and chemical-or redox processes have been reported. With the field moving forward, they were incorporated into surfaces and interfaces to realize amplified directional molecular motion at the nanoscale which can be applied in the control of macroscopic material properties. More recently, molecular motors and molecular machines based on interlocked molecules have been organized into three dimensional materials to expand their functionality in the solid state and enrich their applicability.

This rapid rise in temperatures is linked to a growing energy imbalance in the Earth’s system, intensified by human-induced greenhouse gas emissions.

Ocean Warming Accelerates at an Alarming Rate

The rate at which the oceans are warming has more than quadrupled in the past 40 years, according to a new study.

Can you make something invisible? Neil deGrasse Tyson and comedian Negin Farsad discover the science behind invisibility with professor of physics and optical science, Greg Gbur. What would real-life invisibility look like?

Can you be invisible in other parts of the magnetic spectrum? We discuss transparency versus invisibility and how metamaterials help us interact with different wavelengths. What does light have to do in order to make something invisible? We break down invisibility cloaks and other invisibility devices from fiction.

Could you make yourself invisible to all parts of the electromagnetic spectrum? We explore the main challenges in achieving invisibility and the difference between passive and active invisibility. How useful of a power would it be?

We discuss the interaction between waves and matter. What makes some waves reflect off matter and others pass through? Learn about x rays and how they work, plus, an at-home invisibility trick using prisms. Finally, could you make someone invisible to time?