Axios abuse surged 241% June–August 2025, powering phishing campaigns with 70% success via Microsoft Direct Send.

Questions to inspire discussion.
Technical Specifications.
📏 Q: What are the physical characteristics of the Megapack 3? A: Megapack 3 features a 28-foot long enclosure that can be shipped globally, with 78% fewer connections in the thermal bay, and incorporates a larger battery module and larger cell leveraging the latest cell technology.
⚡ Q: What is the total usable energy capacity of Megapack 3? A: Tesla’s Megapack 3 is designed for 20 megawatt hours of usable AC energy, providing significant storage capacity for large-scale energy projects.
Installation and Efficiency.
🔧 Q: How does Megapack 3 improve installation efficiency? A: Megapack 3 eliminates above-ground cabling and features 78% fewer connections in the thermal bay, significantly streamlining the installation process and reducing potential points of failure.
A new study by Manuel Barrientos and colleagues from the University of Oklahoma reveals that between 0.6% and 2.5% of white dwarfs in our solar neighborhood undergo dramatic cooling delays that could extend habitable zones for billions of additional years. The secret lies in an element known as neon-22, which, after carbon and oxygen, is the most abundant element inside white dwarfs.
When white dwarfs contain at least 2.5% neon-22 by mass, they undergo a process called “distillation” as their cores crystallize. The research team discovered this occurs because the solid crystals become depleted in neon-22 compared to the surrounding liquid, making them lighter and causes them to float upward where they melt. This astronomical equivalent of a lava lamp releases enormous amounts of gravitational energy, effectively putting the white dwarf’s cooling on pause for up to 10 billion years.
The neon-22 forms during the star’s lifetime through a well understood process. During the helium burning stage, nitrogen-14 (produced by the CNO cycle) transforms into neon-22. This means stars with higher initial abundances of carbon, nitrogen, and oxygen (collectively called “metallicity”) produce more neon-22 in their white dwarf descendants.
Magic-angle twisted bilayer graphene (MATBG) is a material created by stacking two sheets of graphene onto each other, with a small twist angle of about 1.1°. At this “magic angle,” electrons move very slowly, which can lead to the emergence of highly correlated electron states.
Due to its unique properties and characteristics, MATBG has become the focus of numerous studies rooted in physics and materials science. Some physicists discovered that when an external magnetic field is applied to MATBG, the flat energy bands in the material transform into a fractal-like energy pattern known as a Hofstadter spectrum.
Researchers at University of Washington, Florida State University and other institutes recently carried out a study aimed at further investigating the emergence of these energy patterns in ultraclean MATBG.
Hydrogen is the most abundant element in the solar system. As a source of clean energy, hydrogen is well-suited for sustainable development, and Earth is a natural hydrogen factory. However, most hydrogen vents reported to date are small, and the geological processes responsible for hydrogen formation—as well as the quantities that can be preserved in geological settings—remain unclear.
Researchers Shinjiro Takano, Yuya Hamasaki, and Tatsuya Tsukuda of the University of Tokyo have successfully visualized the geometric structure of growing gold nanoclusters in their earliest stages. During this process, they also successfully grew a novel structure of elongated nanoclusters, which they named gold quantum needles.
Researchers at the University of Missouri are working to make hydrogen energy as safe as possible. As more countries and industries invest heavily in cleaner, renewable energy, hydrogen-powered factories and vehicles are gaining in popularity. But hydrogen fuel comes with risks—leaks can lead to explosions, accidents and environmental harm. Most hydrogen-detecting sensors on the market are expensive, can’t operate continuously and aren’t sensitive enough to detect tiny leaks quickly.
UK photonics researchers have developed a new kind of hollow-core optical fibre that can transmit light signals about 45% further than current telecom fibres before needing a boost.
The scientists from Microsoft Azure Fiber and the University of Southampton have called this a “breakthrough result” which paves the way for a potential revolution in optical communications.
With further advancements, the new fibre could enable more energy-efficient optical networks with unprecedented data transmission capacities.
A team led by scientists from Peking University has developed a rubber-like material that converts body heat into electricity. This advance could allow the next generation of wearable electronics to generate their own power continuously without the need for bulky batteries or constant recharging.
“Our thermoelectric elastomers combine skin-like elasticity with high energy conversion efficiency, paving the way for next-generation self-powered wearables,” the team said.
Despite the modern world relying heavily on digital optical communication, there has not been a significant improvement in the minimum attenuation—a measure of the loss of optical power per kilometer traveled—of optical fibers in around 40 years. Decreasing this loss would mean that the signal could travel further without being amplified, leading to more data being transmitted over longer distances, faster internet and more efficient networks.
Current fibers transmit light through silica cores, which have limited room for loss improvement. Another option is the hollow-core fiber (HCF), which theoretically allows for faster speeds due to the ability of light to travel faster through air than through silica. Still, scientists struggled to design HCFs that actually performed better than silica-based cables. In most cases, the attenuation was worse or the design was impractical.
But now, researchers from the University of Southampton and Microsoft claim to have made a breakthrough in HCF design in a recently published study in Nature Photonics. The new fiber achieves a record low loss of 0.091 dB/km at 1,550 nm, compared to a 0.14 dB/km minimum loss for silica-based fibers. The new design maintains low losses of around 0.2 dB/km over a 66 THz bandwidth and boasts 45% faster transmission speeds.