How far would you go to keep your mind from failing? Would you go so far as to let a doctor drill a hole in your skull and stick a microchip in your brain?
It’s not an idle question. In recent years neuroscientists have made major advances in cracking the code of memory, figuring out exactly how the human brain stores information and learning to reverse-engineer the process. Now they’ve reached the stage where they’re starting to put all of that theory into practice.
Last month two research teams reported success at using electrical signals, carried into the brain via implanted wires, to boost memory in small groups of test patients. “It’s a major milestone in demonstrating the ability to restore memory function in humans,” says Dr. Robert Hampson, a neuroscientist at Wake Forest School of Medicine and the leader of one of the teams.
As fun as brain-computer interfaces (BCI) are, for the best results they tend to come with the major asterisk of requiring the cutting and lifting of a section of the skull in order to implant a Utah array or similar electrode system. A non-invasive alternative consists out of electrodes which are placed on the skin, yet at a reduced resolution. These electrodes are the subject of a recent experiment by [Shaikh Nayeem Faisal] and colleagues in ACS Applied NanoMaterials employing graphene-coated electrodes in an attempt to optimize their performance.
Although external electrodes can be acceptable for basic tasks, such as registering a response to a specific (visual) impulse or for EEG recordings, they can be impractical in general use. Much of this is due to the disadvantages of the ‘wet’ and ‘dry’ varieties, which as the name suggests involve an electrically conductive gel with the former.
This gel ensures solid contact and a resistance of no more than 5 – 30 kΩ at 50 Hz, whereas dry sensors perform rather poorly at 200 kΩ at 50 Hz with worse signal-to-noise characteristics, even before adding in issues such as using the sensor on a hairy scalp, as tends to be the case for most human subjects.
Neuralace™ is a glimpse of what’s possible in the future of BCI.
This patent pending concept technology is the start of Blackrock’s journey toward whole-brain data capture–with transformative potential for the way neurological disorders are treated. With over 10,000 channels and a flexible lace structure that seamlessly conforms to the brain, Neuralace has potential applications in vision and memory restoration, performance prediction, and the treatment of mental health disorders like depression.
Neuralace is: Ultra-High Channel Count | Wireless | Customizable | Flexible | Thinner than an eyelash.
The possibilities are endless… Whole-brain data capture | Seamless connectivity | Improved biocompatibility About Blackrock Neurotech Blackrock Neurotech is a team of the world’s leading engineers, neuroscientists, and visionaries. Our mission is simple: We want people with neurological disorders to walk, talk, see, hear, and feel again. We’re engineering the next generation of neural implants, including implantable brain-computer interface technology that restores function and independence to individuals with neurological disorders. Join us in changing lives today. Connect with us: Join Our Team | https://bit.ly/3bCsXRv LinkedIn | https://bit.ly/3PfifOL Twitter | https://bit.ly/3PfifOL Instagram | https://bit.ly/3bMaYrW Facebook | https://bit.ly/3JRc2av Clinical Trials | https://bit.ly/3A8QPWm Our site | https://blackrockneurotech.com. Whole-brain data capture | Seamless connectivity | Improved biocompatibility.
About Blackrock Neurotech. Blackrock Neurotech is a team of the world’s leading engineers, neuroscientists, and visionaries. Our mission is simple: We want people with neurological disorders to walk, talk, see, hear, and feel again. We’re engineering the next generation of neural implants, including implantable brain-computer interface technology that restores function and independence to individuals with neurological disorders. Join us in changing lives today.
Blackrock’s long-tested NeuroPort® Array, widely considered the gold standard of high-channel neural interfacing, has been used in human BCIs since 2004 and powered many of the field’s most significant milestones. In clinical trials, patients using Blackrock’s BCI have regained tactile function, movement of their own limbs and prosthetics, and the ability to control digital devices, despite diagnoses of paralysis and other neurological disorders.
While Blackrock’s BCI enables patients to execute sophisticated functions without reliance on assistive technologies, next-generation BCIs for areas such as vision and memory restoration, performance prediction, and treatment of mental health disorders like depression will need to interface with more neurons.
Neuralace is designed to capitalize on this need; with 10,000+ channels and the entire scalable system integrated on an extremely flexible lace-structured chip, it could capture data that is orders of magnitude greater than existing electrodes, allowing for an exponential increase in capability and intuitiveness.
Peptidomics employs techniques of genomics, modern proteomics, state-of-the-art analytical chemistry and computational biology. In this Primer, Hellinger et al. describe the techniques and workflows required for peptide discovery and characterization and give an overview of biological and clinical applications of peptidomics.
The more vividly a person imagines something, the more likely it is that they believe it’s real, finds a new study by University College London researchers.
The research, published in Nature Communications, involved more than 600 participants who took part in an online experiment, where they were asked to imagine images of alternating black and white lines while looking at a computer screen.
After they imagined a stimulus, participants then had to report how vividly they were able to visualize it.
The function of the human brain is exceptional, driving all aspects of our thoughts and creativity. Yet the part of the human brain—the neocortex—responsible for such cognitive functions has a similar overall structure to other mammals.
Through close collaboration between The University of Queensland (UQ), The Mater Hospital and the Royal Brisbane and Women’s Hospital, researchers have discovered the human brain’s enhanced processing power may stem from differences in the structure and function of our neurons.
The results of this study have been published in Cell Reports as “High-fidelity dendritic sodium spike generation in human layer 2/3 neocortical pyramidal neurons.”
An electrically driven on-chip light source of entangled photon pairs is developed by combining an InP gain section and Si3N4 microrings. A pair generation rate of 8,200 counts s−1 and a coincidence-to-accidental ratio of more than 80 are achieved around the wavelength of 1,550 nm.
There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers at Chalmers University have now, for the first time in Sweden, used a quantum computer to undertake calculations within a real-life case in chemistry.
“Quantum computers could in theory be used to handle cases where electrons and atomic nuclei move in more complicated ways. If we can learn to utilize their full potential, we should be able to advance the boundaries of what is possible to calculate and understand,” says Martin Rahm, Associate Professor in Theoretical Chemistry at the Department of Chemistry and Chemical Engineering, who has led the study.
Within the field of quantum chemistry, the laws of quantum mechanics are used to understand which chemical reactions are possible, which structures and materials can be developed, and what characteristics they have. Such studies are normally undertaken with the help of super computers, built with conventional logical circuits. There is however a limit for which calculations conventional computers can handle. Because the laws of quantum mechanics describe the behavior of nature on a subatomic level, many researchers believe that a quantum computer should be better equipped to perform molecular calculations than a conventional computer.
Deep brain stimulation (DBS) is an experimental treatment strategy which uses an implanted device to help patients with severe depression who have reached a point where no other treatment works.
But despite her involvement in the DBS collaboration, which involves neuroscientists, neurosurgeons, electrophysiologists, engineers and computer scientists, neurologist Helen Mayberg does not see it as a long-term solution.
“I hope I live long enough to see that people won’t require a hole in their brain and a device implanted in this way,” she says. “I often have a nightmare with my tombstone that kind of reads like, what did she think she was doing?”