Menu

Blog

Archive for the ‘computing’ category: Page 317

Sep 22, 2022

Precision tomography of a three-qubit donor quantum processor in silicon

Posted by in categories: computing, quantum physics

Circa 2022 Silicon based quantum computer is 99 percent accurate.


Universal quantum logic operations with fidelity exceeding 99%, approaching the threshold of fault tolerance, are realized in a scalable silicon device comprising an electron and two phosphorus nuclei, and a fidelity of 92.5% is obtained for a three-qubit entangled state.

Sep 22, 2022

‘Father of quantum computing’ wins $3m physics prize

Posted by in categories: computing, quantum physics

A theoretical physicist who has never had a regular job has won the most lucrative prize in science for his pioneering contributions to the mind-bending field of quantum computing.

David Deutsch, who is affiliated with the University of Oxford the $3m (about £2.65m) Breakthrough prize in fundamental physics with three other researchers who laid the foundations for the broader discipline of quantum information.

Sep 22, 2022

New Qubit Enters the Quantum-Computer Arena

Posted by in categories: computing, quantum physics

A new type of superconducting qubit could solve a “crowding” problem that hinders the development of superconducting quantum computers with large numbers of qubits.

Sep 22, 2022

Superconductor Breakthrough: Scientists Discover an Invisible Phenomenon

Posted by in categories: biotech/medical, computing, economics, quantum physics

It may be possible to develop superconductors that operate at room temperature with further knowledge of the relationship between spin liquids and superconductivity, which would transform our daily lives.

Superconductors offer enormous technical and economic promise for applications such as high-speed hovertrains, MRI machines, efficient power lines, quantum computing.

Performing computation using quantum-mechanical phenomena such as superposition and entanglement.

Sep 22, 2022

Dr. Ralph Merkle — Nanotechnology & Cryonics — Preserving Ourselves for the Future

Posted by in categories: computing, cryonics, encryption, life extension, nanotechnology

Ralph C. Merkle is a computer scientist. He is one of the inventors of public key cryptography, the inventor of cryptographic hashing, and more recently a researcher and speaker of cryonics.

Videos in the talk: David Eagleman https://www.youtube.com/watch?v=-5tZtYns6kE molecular nanotechnology: https://www.youtube.com/watch?v=zqyZ9bFl_qg.

Filmed 2017/04/30

Sep 22, 2022

Nine Inch Nails — Me I’m Not — Music Video

Posted by in categories: computing, mathematics, media & arts, military

Nine Inch Nails “Me I’m Not” remixed with US military, math, science, and computer footage from the Prelinger Archives.

Sep 22, 2022

Turning a quantum advantage: IBM’s Jay Gambetta on seamlessly integrating quantum and classical computing

Posted by in categories: computing, military, quantum physics

Companies and research labs across the globe are working towards getting their nascent quantum technologies out of the lab and into the real world, with the US technology giant IBM being a key player. In May this year, IBM Quantum unveiled its latest roadmap for the future of quantum computing in the coming decade, and the firm has set some ambitious targets. Having announced its Eagle processor with 127 quantum bits (qubits) last year, the company is now developing the 433-qubit Osprey processor for a debut later this year, to be followed in 2023 by the 1121-qubit Condor.

But beyond that, the company says, the game will switch to assembling such processors into modular circuits, in which the chips are wired together via sparser quantum or classical interconnections. That effort will culminate in what they refer to as their 4158-qubit Kookaburra device in 2025. Beyond then, IBM forecasts modular processors with 100,000 or more qubits, capable of computing without the errors that currently make quantum computing a matter of finding workarounds for the noisiness of the qubits. With this approach, the company’s quantum computing team is confident that it can achieve a general “quantum advantage”, where quantum computers will consistently outperform classical computers and conduct complex computations beyond the means of classical devices.

While he was in London on his way to the 28 th Solvay conference in Brussels, which tackled quantum information, Physics World caught up with physicist Jay Gambetta, vice-president of IBM Quantum. Having spearheaded much of the company’s advances over the past two decades, Gambetta explained how these goals might be reached and what they will entail for the future of quantum computing.

Sep 21, 2022

Thread: Support us! We are indie developers!

Posted by in category: computing

This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Sep 21, 2022

Her work helped her boss win the Nobel Prize. Now the spotlight is on her

Posted by in categories: computing, information science, mathematics, space

Scientists have long studied the work of Subrahmanyan Chandrasekhar, the Indian-born American astrophysicist who won the Nobel Prize in 1983, but few know that his research on stellar and planetary dynamics owes a deep debt of gratitude to an almost forgotten woman: Donna DeEtte Elbert.

From 1948 to 1979, Elbert worked as a “computer” for Chandrasekhar, tirelessly devising and solving mathematical equations by hand. Though she shared authorship with the Nobel laureate on 18 papers and Chandrasekhar enthusiastically acknowledged her seminal contributions, her greatest achievement went unrecognized until a postdoctoral scholar at UCLA connected threads in Chandrasekhar’s work that all led back to Elbert.

Elbert’s achievement? Before anyone else, she predicted the conditions argued to be optimal for a planet or star to generate its own magnetic field, said the scholar, Susanne Horn, who has spent half a decade building on Elbert’s work.

Sep 21, 2022

Designing new quantum materials on the computer

Posted by in categories: computing, particle physics, quantum physics

How do you find novel materials with very specific properties—for example, special electronic properties which are needed for quantum computers? This is usually a very complicated task: various compounds are created, in which potentially promising atoms are arranged in certain crystal structures, and then the material is examined, for example in the low-temperature laboratory of TU Wien.

Now, a cooperation between Rice University (Texas), TU Wien and other international research institutions has succeeded in tracking down suitable materials on the computer. New theoretical methods are used to identify particularly promising candidates from the vast number of possible materials. Measurements at TU Wien have shown the materials do indeed have the required properties and the method works. This is an important step forward for research on quantum materials. The results have now been published in the journal Nature Physics.