Toggle light / dark theme

Controlling polymer shapes: A new generation of shape-adaptive materials

What if a complex material could reshape itself in response to a simple chemical signal? A team of physicists from the University of Vienna and the University of Edinburgh has shown that even small changes in pH value and thus in electric charge can shift the spatial arrangement of closed ring-shaped polymers (molecular chains)—by altering the balance between twist and writhe, two distinct modes of spatial deformation.

Their findings, published in Physical Review Letters, demonstrate how electric charge can be used to reshape polymers in a reversible and controllable way—opening up new possibilities for programmable, responsive materials.

With such materials, permeability and such as elasticity, yield stress and viscosity could be better controlled and precisely “programmed.”

New strategy can directly pattern 2D materials into high-quality wafer-scale arrays

Two-dimensional (2D) semiconductors, materials that can conduct electricity and are only a few atoms thick, are promising alternatives to the conventional silicon-based semiconductors currently used to fabricate many electronics. Despite their promise, these materials have not yet been deployed on a large scale.

One reason for this is that reliably synthesizing them and patterning them to produce wafers (i.e., circular substrates employed in the manufacturing of electronics) has so far proved challenging. In fact, many existing patterning techniques rely on or polymer masks, both of which can leave unwanted residues on a wafer or damage the surface of 2D .

Researchers at Nanyang Technological University recently developed a new strategy to pattern 2D films into high-quality wafer-scale arrays, without damaging them or introducing undesirable residues. Their proposed method, outlined in a paper published in Nature Electronics, entails the use of a metal stamp producing three-dimensional (3D) patterns, which can be pressed onto 2D materials to produce a wafer with desired patterns.

Discovery of bumblebee medicine’s simple structure makes synthetic production viable

Researchers at the University of Chemistry and Technology, Prague have successfully developed a method to chemically synthesize callunene, a natural compound that protects bumblebees from a deadly gut parasite. In a recent discovery, the team also determined that the naturally occurring compound is a 50/50 mixture of its mirror-image forms, meaning the synthetic version can be used directly to safeguard vital pollinator colonies.

The study, published in the Journal of Natural Products, addresses the threat posed by the parasite Crithidia bombi. This protozoan infects bumblebees, impairing their ability to find nectar-rich flowers, which ultimately leads to starvation, reduced fitness, and death. The problem is especially acute in commercial indoor farming operations that rely on healthy pollinator colonies. Not only because of the farming effectiveness, but also because parasites might be spread from indoor pollinators to wild colonies.

Nature provides a defense in the form of callunene, a compound found in the nectar of heather (Calluna vulgaris). Bumblebees that forage on heather are prophylactically protected from Crithidia infection. However, the loss of heathland habitats and the difficulty of isolating the compound from natural sources have made this solution impractical on a large scale.

Programmable nanospheres unlock nature’s 500-million-year-old color secrets

Half a billion years ago, nature evolved a remarkable trick: generating vibrant, shimmering colors via intricate, microscopic structures in feathers, wings and shells that reflect light in precise ways. Now, researchers from Trinity have taken a major step forward in harnessing it for advanced materials science.

A team led by Professor Colm Delaney from Trinity’s School of Chemistry and AMBER, the Research Ireland Center for Advanced Materials and BioEngineering Research, has developed a pioneering method, inspired by nature, to create and program structural colors using a cutting-edge microfabrication technique.

The work could have major implications for environmental sensing, biomedical diagnostics, and photonic materials. The research is published in the journal Advanced Materials.

Columbia scientists turn yogurt into a healing gel that mimics human tissue

Scientists at Columbia Engineering have developed an injectable hydrogel made from yogurt-derived extracellular vesicles (EVs) that could revolutionize regenerative medicine. These EVs serve both as healing agents and as structural components, eliminating the need for added chemicals. The innovation leverages everyday dairy products like yogurt to create a biocompatible material that mimics natural tissue and enhances healing.

Chemistry at the beginning: How molecular reactions influenced the formation of the first stars

Immediately after the Big Bang, which occurred around 13.8 billion years ago, the universe was dominated by unimaginably high temperatures and densities. However, after just a few seconds, it had cooled down enough for the first elements to form, primarily hydrogen and helium. These were still completely ionized at this point, as it took almost 380,000 years for the temperature in the universe to drop enough for neutral atoms to form through recombination with free electrons. This paved the way for the first chemical reactions.

The oldest molecule in existence is the helium hydride ion (HeH⁺), formed from a neutral helium atom and an ionized hydrogen nucleus. This marks the beginning of a chain reaction that leads to the formation of molecular hydrogen (H₂), which is by far the most common molecule in the universe.

Recombination was followed by the “dark age” of cosmology: although the universe was now transparent due to the binding of , there were still no light-emitting objects, such as stars. Several hundred million years passed before the first stars formed.

Chinese Scientists Develop Breakthrough Catalyst for Clean Propane Conversion

Scientists have pioneered a water- and light-driven method for converting propane at near-room temperature, opening the door to sustainable, low-energy catalysis. Propane dehydrogenation (PDH) is a chemical process that requires a large input of heat, typically needing temperatures above 600°C wh

How materials science could revolutionise technology — with Jess Wade

Jess Wade explains the concept of chirality, and how it might revolutionise technological innovation.

Join this channel to get access to perks:
https://www.youtube.com/channel/UCYeF244yNGuFefuFKqxIAXw/join.
Watch the Q&A here (exclusively for our Science Supporters): https://youtu.be/VlkHT-0zx9U

This lecture was recorded at the Ri on 14 June 2025.

Imagine if we could keep our mobile phones on full brightness all day, without worrying about draining our battery? Or if we could create a fuel cell that used sunlight to convert water into hydrogen and oxygen? Or if we could build a low-power sensor that could map out brain function?

Whether it’s optoelectronics, spintronics or quantum, the technologies of tomorrow are underpinned by advances in materials science and engineering. For example, chirality, a symmetry property of mirror-image systems that cannot be superimposed, can be used to control the spin of electrons and photons. Join functional materials scientist Jess Wade as she explores how advances in chemistry, physics and materials offer new opportunities in technological innovation.

Study uncovers technologically appealing trick used by microalgae to manipulate light

Skoltech researchers and their colleagues have uncovered an intricate light manipulation mechanism likely used by microscopic algae to boost photosynthesis.

By studying the interaction of light with the elaborately patterned silicon dioxide shells enclosing the , the team hopes to reveal principles that could eventually be leveraged in light detectors, bio-and chemical sensors, protective coatings against ultraviolet rays, , and other nature-inspired technology, right up to artificial photosynthesis systems using CO2 and water to make fuel.

The study was published in the journal Optica.

Lunar soil could support life on the Moon, say scientists

Scientists have developed a technology that may help humans survive on the moon. In a study published in the journal Joule, researchers extracted water from lunar soil and used it to convert carbon dioxide into oxygen and chemicals for fuel—potentially opening new doors for future deep space exploration by mitigating the need to transport essential resources like water and fuel all the way from Earth.

“We never fully imagined the ‘magic’ that the lunar soil possessed,” said Lu Wang of the Chinese University of Hong Kong, Shenzhen.

“The biggest surprise for us was the tangible success of this integrated approach. The one-step integration of lunar H2O extraction and photothermal CO2 catalysis could enhance energy utilization efficiency and decrease the cost and complexity of infrastructure development.”

/* */