Toggle light / dark theme

A research team has developed an innovative single-step laser printing technique to accelerate the manufacturing of lithium-sulfur batteries. Integrating the commonly time-consuming active materials synthesis and cathode preparation in a nanosecond-scale laser-induced conversion process, this technique is set to revolutionize the future industrial production of printable electrochemical energy storage devices. The team was led by Prof. Mitch Li Guijun, Assistant Professor from the Division of Integrative Systems and Design at the Hong Kong University of Science and Technology (HKUST).

The findings of this study are published in the journal Nature Communications.

Lithium-sulfur batteries are expected to supersede existing due to sulfur cathodes’ high theoretical energy density. To ensure the rapid conversion of sulfur species, these cathodes are typically composed of active materials, host materials (or catalysts), and conductive materials.

ICLR 2025

Shaden Alshammari, John Hershey, Axel Feldmann, William T. Freeman, Mark Hamilton.

MIT, Microsoft, Google.

(https://mhamilton.net/icon.

[ https://openreview.net/forum?id=WfaQrKCr4X](https://openreview.net/forum?id=WfaQrKCr4X

[ https://github.com/mhamilton723/STEGO](https://github.com/mhamilton723/STEGO

Prebiotic molecules central to life’s earliest metabolic processes—chemical reactions in cells that change food into energy—may have been born in deep space long before Earth existed, according to new research from the University of Hawaiʻi at Mānoa Department of Chemistry.

Scientists in the W. M. Keck Research Laboratory in Astrochemistry have recreated the found in dense interstellar clouds and discovered a way for the complete set of complex carboxylic acids—critical ingredients in modern metabolism—to form without life on timescales equivalent to a few million years.

The study, published in the Proceedings of the National Academy of Sciences, focused on molecules such as those in the Krebs cycle, a fundamental metabolic pathway used by nearly all living organisms. These molecules, which help break down nutrients to release energy, may have , forming in the icy, low-temperature environments of interstellar space.

A technology for hydrogen (H2) production has been developed by a team of researchers led by Professors Seungho Cho and Kwanyong Seo from the School of Energy and Chemical Engineering at UNIST, in collaboration with Professor Ji-Wook Jang’s team from the Department of Materials Science and Engineering at UNIST.

Their research is published in the journal Nature Communications.

This innovative method utilizes biomass derived from sugarcane waste and silicon photoelectrodes to generate H2 exclusively using sunlight, achieving a production rate four times higher than the commercialization benchmark set by the U.S. Department of Energy (DOE).

In an experiment reminiscent of the “Transformers” movie franchise, engineers at Princeton University have created a type of material that can expand, assume new shapes, move and follow electromagnetic commands like a remotely controlled robot, even though it lacks any motor or internal gears.

“You can transform between a material and a robot, and it is controllable with an ,” said researcher Glaucio Paulino, the Margareta Engman Augustine Professor of Engineering at Princeton.

In an article published in Nature, the researchers describe how they drew inspiration from the folding art of origami to create a structure that blurs the lines between robotics and materials. The invention is a metamaterial, which is a material engineered to feature new and unusual properties that depend on the material’s physical structure rather than its chemical composition.

Using spill-treating agents to clean up oil spills does not significantly hinder naturally occurring oil biodegradation, according to a new study. The research, published in Applied and Environmental Microbiology, provides information that will be useful in future oil spills.

Biodegradation is an incredibly important natural process when it comes to . A significant portion of the oil can be permanently removed from the contaminated area through . On-scene coordinators and other first responders must weigh the benefits against potential risks of any response action, such as using spill-treating agents. Emergency response actions to vary widely depending on the scale of an oil spill, location and environmental conditions.

Different treating agents serve different functions. Oil dispersants break the oil into smaller droplets. Surface washing agents lift stranded oil from solid substrates. Chemical herders corral oil into a thicker slick to ease mechanical removal and can also enhance burning efficiency.

Chemists have confirmed a 67-year-old theory about vitamin B1 by stabilizing a reactive molecule in water—a feat long thought impossible. The discovery not only solves a biochemical mystery, but also opens the door to greener, more efficient ways of making pharmaceuticals.

The molecule in question is a carbene, a type of carbon atom with only six valence electrons. Generally, carbon is stable with eight electrons around it. With only six electrons, it is chemically unstable and highly reactive. In water, it usually decomposes instantly. But for decades, scientists have suspected that vitamin B1, also known as thiamine, may form a carbene-like structure in our cells to carry out vital reactions in the body.

Now, for the first time, researchers have not only generated a stable carbene in water, they’ve also isolated it, sealed it in a tube, and watched it stay intact for months. This discovery is documented in a paper published last week in Science Advances.

Catalytic conversion of waste CO2 into value-added fuels and chemicals offers unprecedented opportunities for both environmental protection and economic development. Electrocatalytic CO2 reduction reaction (CO2RR) has garnered significant attention for its ability to efficiently convert CO2 into clean chemical energy under mild conditions. However, the relatively high energy barrier for *COOH intermediate formation often becomes the determining step in CO2RR, significantly limiting reaction efficiency.

Inspired by , a team led by Prof. Jiang Hai-Long and Prof. Jiao Long from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) developed a novel strategy to stabilize *COOH intermediate and enhance electrochemical CO2 reduction by constructing and modulating the hydrogen-bonding microenvironment around catalytic sites. Their work is published in the Proceedings of the National Academy of Sciences.

In this work, the team co-grafted catalytically active Co(salen) units and proximal pyridyl-substituted alkyl (X-PyCn) onto Hf-based MOF nanosheets (MOFNs) via a post decoration route, affording Co&X-PyCn/MOFNs (X = o, m or p representing the ortho-, meta-, or para-position of pyridine N relative to alkyl chain; n = 1 or 3 representing the carbon atom number of alkyl chains) materials.

In nature and technology, crystallization plays a pivotal role, from forming snowflakes and pharmaceuticals to creating advanced batteries and desalination membranes. Despite its importance, crystallization at the nanoscale is poorly understood, mainly because observing the process directly at this scale is exceptionally challenging. My research overcame this hurdle by employing state-of-the-art computational methods, allowing them to visualize atomic interactions in unprecedented detail.

Published in Chemical Science, my research has uncovered new details about how salt crystals form in tiny nanometer-sized spaces, which could pave the way for and improved electrochemical technologies.

This research used sophisticated enhanced by cutting-edge machine learning techniques to study how (NaCl), common table salt, crystallizes when confined between two graphene sheets separated by just a few billionths of a meter. These , known as nano-confinement, drastically alter how molecules behave compared to bulk, everyday conditions.

Tuberculosis (TB) is an infectious disease that kills more than a million people worldwide every year. The pathogen that causes the disease, Mycobacterium tuberculosis, is deadly in part because of its complex outer envelope, which helps it evade immune responses of infected hosts.

In an ACS Infectious Diseases paper, researchers developed a chemical probe to study a key component of this envelope. Their results provide a step toward finding new ways of inactivating the bacterium.

Because curing TB requires taking drugs for months, which can result in TB resistance to some antibiotics, scientists are working to develop new treatments. One possible target is the bacterium’s outermost layer, called the mycomembrane, which protects the bacteria from stressors. When M. is attacked by a host’s macrophage , the mycomembrane produces compounds that suppress the infected host’s immune response.