Toggle light / dark theme

The work highlights a growing focus on the chemical targeting of surrounding tissues as part of efforts to stop cancerous cells expanding to other organs.


Research highlights growing focus on surrounding tissues to help tackle most malignant forms of the disease.

Quantum sensors can be significantly more precise than conventional sensors and are used for Earth observation, navigation, material testing, and chemical or biomedical analysis, for example. TU Darmstadt researchers have now developed and tested a technique that makes quantum sensors even more precise.

What is behind this technology? Quantum sensors, based on the wave nature of , use quantum interference to measure accelerations and rotations with extremely high precision. This technology requires optimized beam splitters and mirrors for atoms. However, atoms that are reflected in unintentional ways can significantly impair such measurements.

The scientists therefore use specially designed as velocity-selective atom , which reflect the desired atoms and allow parasitic atoms to pass through. This approach reduces the noise in the signal, making the measurements much more precise. The research is published in the journal Physical Review Research.

Researchers are breaking new ground with halide perovskites, promising a revolution in energy-efficient technologies.

By exploring these materials at the nanoscale.

The term “nanoscale” refers to dimensions that are measured in nanometers (nm), with one nanometer equaling one-billionth of a meter. This scale encompasses sizes from approximately 1 to 100 nanometers, where unique physical, chemical, and biological properties emerge that are not present in bulk materials. At the nanoscale, materials exhibit phenomena such as quantum effects and increased surface area to volume ratios, which can significantly alter their optical, electrical, and magnetic behaviors. These characteristics make nanoscale materials highly valuable for a wide range of applications, including electronics, medicine, and materials science.

The process of separating useful molecules from mixtures of other substances accounts for 15% of the nation’s energy, emits 100 million tons of carbon dioxide and costs $4 billion annually.

Commercial manufacturers produce columns of porous materials to separate potential new drugs developed by the pharmaceutical industry, for example, and also for energy and chemical production, environmental science and making foods and beverages.

But in a new study, researchers at Case Western Reserve University have found these manufactured separation materials don’t function as intended because the pores are so packed with polymer they become blocked. That means the separations are inefficient and unnecessarily expensive.

Using a series of more than 1,000 X-ray snapshots of the shapeshifting of enzymes in action, researchers at Stanford University have illuminated one of the great mysteries of life—how enzymes are able to speed up life-sustaining biochemical reactions so dramatically. Their findings could impact fields ranging from basic science to drug discovery, and provoke a rethinking of how science is taught in the classroom.

“When I say enzymes speed up reactions, I mean as in a trillion-trillion times faster for some reactions,” noted senior author of the study, Dan Herschlag, professor of biochemistry in the School of Medicine. “Enzymes are really remarkable little machines, but our understanding of exactly how they work has been lacking.”

There are lots of ideas and theories that make sense, Herschlag said, but biochemists have not been able to translate those ideas into a specific understanding of the chemical and physical interactions responsible for enzymes’ enormous reaction rates. As a result, biochemists don’t have a basic understanding and, therefore, have been unable to predict rates or design new enzymes as well as nature does, an ability that would be impactful across industry and medicine.

A new way of creating hydrogen, which eliminates direct CO2 emissions at source, has been developed by an international team of scientists.

The process reacts hydrogen-rich and sustainably sourced bioethanol taken from agricultural waste with water at just 270°C using a new bimetallic catalyst. Unlike traditional methods, which operate between 400°C and 600°C, are energy-intensive and generate large amounts of CO2, the catalyst shifts the chemical reaction to create hydrogen without releasing as a byproduct.

Instead, the process co-produces high-value , an organic liquid used in , household cleaning products, manufacturing and medicine, and has an annual global consumption exceeding 15 million tons.

This periodic table depicts the primary source on Earth for each element. In cases where two sources contribute fairly equally, both appear. || PeriodicTableOrigins2_print.jpg (1024×682) [251.7 KB] || PeriodicTableOrigins2_Large.png (25042×16695) [52.0 MB] || PeriodicTableOrigins2.png (6000×4000) [3.4 MB] || PeriodicTableOrigins2.jpg (6000×4000) [2.2 MB] || PeriodicTableOrigins2_searchweb.png (320×180) [82.4 KB] || PeriodicTableOrigins2_thm.png (80×40) [7.6 KB].

Astrophysicists have unearthed a surprising diversity in the ways in which white dwarf stars explode in deep space after assessing almost 4,000 such events captured in detail by a next-gen astronomical sky survey. Their findings may help us more accurately measure distances in the universe and further our knowledge of “dark energy.”

The dramatic explosions of at the ends of their lives have for decades played a pivotal role in the study of dark energy—the mysterious force responsible for the accelerating expansion of the universe. They also provide the origin of many elements in our periodic table, such as titanium, iron and nickel, which are formed in the extremely dense and hot conditions present during their explosions.

A major milestone has been achieved in our understanding of these explosive transients with the release of a major dataset, and associated 21 publications in an Astronomy & Astrophysics special issue.

University of Queensland researchers have for the first time introduced genetic material into plants via their roots, opening a potential pathway for rapid crop improvement. The research is published in Nature Plants.

Professor Bernard Carroll from UQ’s School of Chemistry and Molecular Biosciences said nanoparticle technology could help fine-tune plant genes to increase crop yield and improve food quality.

“Traditional plant breeding and take many generations to produce a new crop variety, which is time-consuming and expensive,” Professor Carroll said.

In April 1982, Prof. Dan Shechtman of the Technion–Israel Institute of Technology made the discovery that would later earn him the 2011 Nobel Prize in Chemistry: the quasiperiodic crystal. According to diffraction measurements made with an electron microscope, the new material appeared “disorganized” at smaller scales, yet with a distinct order and symmetry apparent at a larger scale.

This form of matter was considered impossible, and it took many years to convince the scientific community of the discovery’s validity. The first physicists to theoretically explain this discovery were Prof. Dov Levine, then a doctoral student at the University of Pennsylvania and now a faculty member in the Technion Physics department, and his advisor, Prof. Paul Steinhardt.

The key insight that enabled their explanation was that quasicrystals were, in fact, periodic—but in a higher dimension than the one in which they exist physically. Using this realization, the physicists were able to describe and predict mechanical and thermodynamic properties of quasicrystals.