Archive for the ‘chemistry’ category: Page 8

Sep 2, 2021

Paving the path to electrically-pumped lasers from colloidal-quantum-dot solutions

Posted by in categories: biotech/medical, chemistry, computing, quantum physics, wearables

In a new review article in Nature Photonics, scientists from Los Alamos National Laboratory assess the status of research into colloidal quantum dot lasers with a focus on prospective electrically pumped devices, or laser diodes. The review analyzes the challenges for realizing lasing with electrical excitation, discusses approaches to overcome them, and surveys recent advances toward this objective.

“Colloidal quantum dot lasers have tremendous potential in a range of applications, including integrated optical circuits, wearable technologies, lab-on-a-chip devices, and advanced medical imaging and diagnostics,” said Victor Klimov, a senior researcher in the Chemistry division at Los Alamos and lead author of the cover article in Nature Photonics. “These solution-processed quantum dot present unique challenges, which we’re making good progress in overcoming.”

Heeyoung Jung and Namyoung Ahn, also of Los Alamos’ Chemistry division, are coauthors.

Continue reading “Paving the path to electrically-pumped lasers from colloidal-quantum-dot solutions” »

Sep 2, 2021

Mykola Tolmachov — Chernobyl-51 Indust. Cluster — Ecosystem Restoration — Energy/Chemical Byproducts

Posted by in categories: chemistry, nuclear energy, sustainability

The chernobyl special industrial zone — ecosystem restoration, remediation, and the development of energy and chemical byproducts — mykola tolmachov, chernobyl-51 industrial cluster.

The Chernobyl disaster / nuclear accident, occurred on April 26th, 1,986 at the No. 4 reactor in the Chernobyl Nuclear Power Plant, near the city of Pripyat in the north of Ukraine.

Continue reading “Mykola Tolmachov — Chernobyl-51 Indust. Cluster — Ecosystem Restoration — Energy/Chemical Byproducts” »

Sep 1, 2021

Hidden bacterial hairs power nature’s ‘electric grid’

Posted by in categories: chemistry, energy, nanotechnology

A hair-like protein hidden inside bacteria serves as a sort of on-off switch for nature’s “electric grid,” a global web of bacteria-generated nanowires that permeates all oxygen-less soil and deep ocean beds, Yale researchers report in the journal Nature. “The ground beneath our feet, the entire globe, is electrically wired,” said Nikhil Malvankar, assistant professor of molecular biophysics and biochemistry at the Microbial Sciences Institute at Yale’s West Campus and senior author of the paper. “These previously hidden bacterial hairs are the molecular switch controlling the release of nanowires that make up nature’s electrical grid.”

Almost all living things breathe oxygen to get rid of excess electrons when converting nutrients into energy. Without access to oxygen, however, living deep under oceans or buried underground over billions of years have developed a way to respire by “breathing minerals,” like snorkeling, through tiny protein filaments called .

Continue reading “Hidden bacterial hairs power nature’s ‘electric grid’” »

Sep 1, 2021

Mitochondrial Diseases May Potentially Be Improved by New Approach

Posted by in categories: biotech/medical, chemistry, genetics

Mitochondrial DNA diseases are common neurological conditions caused by mutations in the mitochondrial genome or nuclear genes responsible for its maintenance. Current treatments for these disorders are focused on the management of the symptoms, rather than the correction of biochemical defects caused by the mutation. Now, scientists at Kyoto University’s Institute for Integrated Cell-Material Science (iCeMS) in Japan report a new approach where mutant DNA sequences inside cellular mitochondria can be eliminated using a bespoke chemical compound. The approach may lead to better treatments for mitochondrial diseases.

Their findings are published in the journal Cell Chemical Biology in a paper titled, “Targeted elimination of mutated mitochondrial DNA by a multi-functional conjugate capable of sequence-specific adenine alkylation.”

“Mutations in mitochondrial DNA (mtDNA) cause mitochondrial diseases, characterized by abnormal mitochondrial function,” the researchers wrote. “Although eliminating mutated mtDNA has potential to cure mitochondrial diseases, no chemical-based drugs in clinical trials are capable of selective modulation of mtDNA mutations. Here, we construct a class of compounds encompassing pyrrole-imidazole polyamides (PIPs), mitochondria-penetrating peptide, and chlorambucil, an adenine-specific DNA-alkylating reagent.”

Continue reading “Mitochondrial Diseases May Potentially Be Improved by New Approach” »

Sep 1, 2021

Using liquid metal to turn motion into electricity, even underwater

Posted by in categories: chemistry, energy, engineering

Researchers at North Carolina State University have created a soft and stretchable device that converts movement into electricity and can work in wet environments.

“Mechanical energy—such as the kinetic energy of wind, waves, and vibrations from motors—is abundant,” says Michael Dickey, corresponding author of a paper on the work and Camille & Henry Dreyfus Professor of Chemical and Biomolecular Engineering at NC State. “We have created a that can turn this type of mechanical motion into . And one of its remarkable attributes is that it works perfectly well underwater.”

Continue reading “Using liquid metal to turn motion into electricity, even underwater” »

Aug 31, 2021

Genes can respond to coded information in signals —or filter them out entirely

Posted by in categories: biotech/medical, chemistry, engineering

Genes can respond to coded information in signals—or filter them out entirely.

New research from North Carolina State University demonstrates that genes are capable of identifying and responding to coded information in light signals, as well as filtering out some signals entirely. The study shows how a single mechanism can trigger different behaviors from the same gene—and has applications in the biotechnology sector.

“The fundamental idea here is that you can encode information in the dynamics of a signal that a gene is receiving,” says Albert Keung, corresponding author of a paper on the work and an assistant professor of chemical and biomolecular engineering at NC State. “So, rather than a signal simply being present or absent, the way in which the signal is being presented matters.”

Continue reading “Genes can respond to coded information in signals —or filter them out entirely” »

Aug 31, 2021

Toxic ‘forever chemicals’ contaminate indoor air at worrying levels, study finds

Posted by in categories: biotech/medical, chemistry, food

Science from industry, federal agencies and independent researchers now links 6:2 FTOH to kidney disease, cancer, neurological damage, developmental problems, mottled teeth and autoimmune disorders, while researchers also found higher mortality rates among young animals and human mothers exposed to the chemicals.

Experts previously considered food and water to be the two main routes by which humans are exposed to PFAS, but the study’s authors note that many humans spend about 90% of their time indoors, and the findings suggest that breathing in the chemicals probably represents a third significant exposure route.

“It’s an underestimated and potentially important source of exposure to PFAS,” said Tom Bruton, a co-author and senior scientist at Green Science.

Continue reading “Toxic ‘forever chemicals’ contaminate indoor air at worrying levels, study finds” »

Aug 31, 2021

Synthetic biology enables microbes to build muscle

Posted by in categories: bioengineering, biological, chemistry

Would you wear clothing made of muscle fibers? Use them to tie your shoes or even wear them as a belt? It may sound a bit odd, but if those fibers could endure more energy before breaking than cotton, silk, nylon, or even Kevlar, then why not?

Don’t worry, this muscle could be produced without harming a single animal.

Researchers at the McKelvey School of Engineering at Washington University in St. Louis have developed a synthetic chemistry approach to polymerize proteins inside of engineered microbes. This enabled the microbes to produce the high molecular weight muscle protein, titin, which was then spun into fibers.

Aug 31, 2021

Flexible carbon nanotube fibers woven into clothing gather accurate EKG, heart rate

Posted by in categories: chemistry, nanotechnology

There’s no need to don uncomfortable smartwatches or chest straps to monitor your heart if your comfy shirt can do a better job.

That’s the idea behind “” developed by a Rice University lab, which employed its conductive nanotube thread to weave functionality into regular apparel.

Continue reading “Flexible carbon nanotube fibers woven into clothing gather accurate EKG, heart rate” »

Aug 31, 2021

Smart ‘E-Skin’ Identifies Your Movements

Posted by in categories: chemistry, engineering, nanotechnology, wearables

Technion scientists have created a wearable motion sensor capable of identifying movements such as bending and twisting. This smart ‘e-skin’ was produced using a highly stretchable electronic material, which essentially forms an electronic skin capable of recognizing the range of movement human joints normally make, with up to half a degree precision.

This breakthrough is the result of collaborative work between researchers from different fields in the Laboratory for Nanomaterial-Based Devices, headed by Professor Hossam Haick from the Technion Wolfson Faculty of Chemical Engineering. It was recently published in Advanced Materials and was featured on the journal’s cover.

This wearable motion sensor, which senses bending and twisting, can be applied in healthcare and manufacturing.

Continue reading “Smart ‘E-Skin’ Identifies Your Movements” »

Page 8 of 116First56789101112Last