Toggle light / dark theme

Protein-based gel restores dental enamel and could advance tooth repair

Scientists from the University of Nottingham’s School of Pharmacy and Department of Chemical and Environmental Engineering, in collaboration with an international team of researchers, have developed a bio-inspired material that has the potential to regenerate demineralized or eroded enamel, strengthen healthy enamel, and prevent future decay. The findings have been published in Nature Communications.

The gel can be rapidly applied to teeth in the same way dentists currently apply standard fluoride treatments. However, this new protein-based gel is fluoride free and works by mimicking key features of the natural proteins that guide the growth of dental enamel in infancy.

When applied, the gel creates a thin and robust layer that impregnates teeth, filling holes and cracks in them. It then functions as a scaffold that takes calcium and phosphate ions from saliva and promotes the controlled growth of new mineral in a process called epitaxial mineralization. This enables the new mineral to be organized and integrated into the underlying natural tissue while recovering both the structure and properties of natural healthy enamel.

CERN’s electrostatic trap ‘recycles’ anions to illuminate the heaviest elements

From the burning of wood to the action of medicines, the properties and behavior of matter are governed by the way chemical elements bond with one another. For many of the 118 known elements, the intricate electronic structures of the atoms that are responsible for chemical bonding are well understood. But for the superheavy elements lying at the far edge of the periodic table, measuring even a single property of these exotic species is a major challenge.

In a new paper published in Nature Communications, a team of researchers working at the ISOLDE facility at CERN report a novel technique that could help unlock the chemistry of (super)heavy elements and has potential applications in fundamental physics research and medical treatments.

Superheavy elements are highly unstable and can only be produced in accelerator laboratories in minute amounts. This is why researchers tend to first perfect their techniques on elements that are stable and lighter.

History of quantum mechanics

The history of quantum mechanics is a fundamental part of the history of modern physics. The major chapters of this history begin with the emergence of quantum ideas to explain individual phenomena—blackbody radiation, the photoelectric effect, solar emission spectra—an era called the Old or Older quantum theories. [ 1 ]

Building on the technology developed in classical mechanics, the invention of wave mechanics by Erwin Schrödinger and expansion by many others triggers the “modern” era beginning around 1925. Paul Dirac’s relativistic quantum theory work led him to explore quantum theories of radiation, culminating in quantum electrodynamics, the first quantum field theory. The history of quantum mechanics continues in the history of quantum field theory. The history of quantum chemistry, theoretical basis of chemical structure, reactivity, and bonding, interlaces with the events discussed in this article.

The phrase “quantum mechanics” was coined (in German, Quantenmechanik) by the group of physicists including Max Born, Werner Heisenberg, and Wolfgang Pauli, at the University of Göttingen in the early 1920s, and was first used in Born and P. Jordan’s September 1925 paper “Zur Quantenmechanik”. [ 2 ] [ 3 ] [ 4 ].

Scientists Unlock the Cancer-Fighting Power of the Rarest Element on Earth

Texas A&M researchers have unlocked a new way to harness astatine-211, a rare and powerful isotope that may revolutionize cancer treatment. Astatine is the rarest naturally occurring element on the planet and among the least explored in the periodic table, largely because its name, derived fr

Experimental proof of long-suspected atomic decay pathway adds new detail to ‘nuclear periodic table’

For the first time, a research team from the University of Cologne has observed the electron capture decay of technetium-98, an isotope of the chemical element technetium (Tc). Electron capture decay is a process in which an atomic nucleus “captures” an electron from its inner shell. The electron merges with a proton in the nucleus to form a neutron, turning the element into a different one. The working group from the Nuclear Chemistry department has thus confirmed a decades-old theoretical assumption.

The findings contribute to a more comprehensive understanding of technetium processes and extend the chart of nuclides—the “nuclear periodic table.” The study was published under the title “Electron-capture decay of 98 Tc” in the journal Physical Review C.

As early as the 1990s, researchers suspected that technetium-98 could also decay by capturing an electron, but no proof could be found, as the isotope only is available in extremely small quantities. For the current study, the Cologne research team used around three grams of technetium-99, which contains tiny traces of the rare isotope technetium-98 (around 0.06 micrograms).

Computationally accelerated organic synthesis: Optimal ligand prediction for generating reactive alkyl ketone radicals

Because ketones are widespread in organic molecules, chemists are eager to develop new reactions that use them to form chemical bonds. One challenging reaction is the one-electron reduction of ketones to generate ketyl radicals.

Ketyl radicals are reactive intermediates used in natural product synthesis and pharmaceutical chemistry; however, most methodologies are optimized for aryl while simple alkyl ketones remain challenging for chemists. Alkyl ketones are considerably more abundant but intrinsically more difficult to reduce than aryl ketones.

To this end, a team of specialized organic chemists and computational chemists from WPI-ICReDD at Hokkaido University has developed a new catalytic method for generating alkyl ketyl radicals.

JWST Detects Carbon-Rich Disk Around Young Exoplanet

“We want to learn more about how our solar system formed moons. This means that we need to look at other systems that are still under construction. We’re trying to understand how it all works,” said Dr. Gabriela Cugno.


How do moons form around gas giant planets? This is what a recent study published in The Astrophysical Journal Letters hopes to address as a team of scientists investigated how circumplanetary disks (CPDs) comprised of the gas and dust leftover from planetary formation evolve into moons. This study has the potential to help scientists better understand the conditions for exomoon formation and evolution and where scientists could potentially search for life beyond Earth.

For the study, the researchers used NASA’s James Webb Space Telescope to observe the CPD orbiting CT Cha b, which is located approximately 620 light-years from Earth and is approximately 17 times as massive as Jupiter. The goal of the study was to ascertain the composition of the CPD and compare it to CT Cha b and the surrounding disk of the host star, CT Cha A.

In the end, the researchers found that the CPD around CT Cha b was composed of carbon-rich chemistry that contrasted compositions of gas giant exoplanet atmospheres. Additionally, the researchers found the CPD’s carbon-rich chemistry composition also contrasted with the disk surrounding CT Cha A. The team concluded that this is the first evidence of moon formation around a gas giant exoplanet and compared this to the potential formation mechanism for Jupiter’s Galilean moons.

Astronomers Create First 3D Map of an Exoplanet’s Atmosphere

“Eclipse mapping allows us to image exoplanets that we can’t see directly, because their host stars are too bright,” said Dr. Ryan Challener.


What can a 3D map of an exoplanet’s atmosphere teach astronomers about the planet’s formation, evolution, and composition? This is what a recent study published in Nature Astronomy hopes to address as a team of scientists presented a first-time 3D map of an exoplanet’s atmosphere based on temperature. This study has the potential to help scientists better understand the formation and evolution of exoplanet atmospheres while opening the doors for developing better methods of studying them.

For the study, the researchers used data obtained from NASA’s James Webb Space Telescope to develop a new method called 3D eclipse mapping on WASP-18b, which is located just over 400 light-years from Earth and whose radius is slightly more than Jupiter’s while have ten times its mass. WASP-18b is known as an “ultra-hot” Jupiter, as it orbits extremely close to its star at 0.02024 astronomical units (AU) while completing one orbit in only 0.9 days. For context, the planet Mercury orbits our Sun at 0.387 AU and completes one orbit in 88 days. WASP-18b is also tidally locked to its star like our Moon is tidally locked to Earth.

In the end, the researchers found that WASP-18b’s “dayside” features variations in temperature and chemical composition while also exhibiting a circular “hotspot” where the largest amount of starlight hits the atmosphere. Additionally, the team found this hotspot is surrounded by a colder “ring” closer to the limbs of the planet, or the outer edges where the shape of the planet is visible.

Powerful New Antibiotic Was ‘Hiding in Plain Sight’ For Decades

Researchers have just identified a powerful new antibiotic – in a significant discovery made not by breaking new ground, but by revisiting familiar territory.

The compound, pre-methylenomycin C lactone, was discovered by a team from Warwick University in the UK and Monash University in Australia. While it’s never been spotted before, it comes from a type of bacteria that scientists have studied for decades.

Potentially, it could help fight bacteria that have become increasingly resistant to modern treatments – and it’s actually an intermediate chemical that’s created during the process of making another antibiotic, methylenomycin A.

Chemists design candidate drug against diabetes

Researchers from the University at Albany and NYU Grossman School of Medicine have found a way to block a key cellular pathway known to drive chronic inflammation and impaired wound healing in people with diabetes.

The breakthrough could offer a new therapeutic option for stopping the harmful effects of both type 1 and type 2 at the source.

In their latest work, the researchers successfully identified—and developed a small molecule drug to disrupt—an intracellular chain reaction that is a major contributor to diabetes-induced complications. Their findings, published earlier this month, were featured on the cover of Cell Chemical Biology.

/* */